- •Понятие науки. Классификация наук. Особенности научного знания.
- •2)Классификация наук.
- •Философия и наука. Проблема взаимосвязи философии и науки.
- •Наука, паранауки, квазинаука, лженаука.
- •Понятие метода. Классификация методов научного познания. Взаимосвязь метода и предмета познания.
- •Методы эмпирического исследования (наблюдение, эксперимент, измерение)
- •Методы теоретического познания: формализация, аксиоматический метод, гипотетико-дедуктивный метод
- •Общенаучные методы научного познания: абстрагирование, идеализация, мысленный эксперимент.
- •Общенаучные методы научного познания: анализ, синтез, индукция, дедукция, аналогия и моделирование.
- •Формы научного знания: научный факт, проблема, гипотеза, закон.
- •Структура и функции научной теории. Познавательная ценность научной теории.
- •Основные исторические этапы в развитии науки. Понятие научной рациональности и ее типология.
- •Становление знания о мире и человеке в первобытную эпоху. Синкретизм как характерная черта первобытного сознания.
- •Становление науки в античности.
- •Наука средневекового периода исторического развития.
- •Геоцентрическая и гелиоцентрическая картины мира: их формирование и значение для развития науки.
- •Зарождение, формирование и кризис механистической картины мира (17-18 в.В.)
- •Научные открытия конца 19 – начала 20 веков и их влияние на формирование неклассического типа научной рациональности. Своеобразие неклассического типа научной рациональности.
- •Зарождение и формирование эволюционных идей в науке.
- •Классический тип рациональности как основа новоевропейского научного мышления и его основные характеристики
- •Научные открытия второй половины 20 века и их влияние на формирование постнеклассического типа научной рациональности. Особенность постнеклассического типа научной рациональности.
- •Место эмпириокритицизма в истории философии и науки. Идейные источники эмпириокритицизма. Э.Мах как представитель эмпириокритицизма, особенность его взгляда на науку.
- •Значение взглядов ф.Бэкона в создание новой методологии научного познания.
- •Р.Декарт о методе достижения истинного значения.
- •Образ науки в концепции логического позитивизма. Принцип верификации.
- •«Критический рационализм» к. Поппера. Идея роста научного знания и принцип фальсификации.
- •Концепция научных революций т.Куна. Понятие «парадигма».
- •Концепция развития науки и.Лакатоса
- •Проблема истинности научного знания. Основные концепции истины в науке.
- •Философские аспекты развития техники с древнейших времен и до эпохи Нового времени.
- •Философские аспекты развития техники с эпохи Нового времени и до наших дней.
- •Понятие техники. Проблема взаимосвязи науки и техники.
- •Понимание сущности техники в концепциях х. Ортеги-и-Гассета и ф. Дессауэра
- •Понимание сущности техники в концепциях о. Шпенглера и м. Хайдеггера.
- •Становление науки как социального института. Коллективная деятельность в науке и ее функции.
- •Особенности математического знания. Онтологический статус математических объектов.
- •Понятие науки. Классификация наук. Особенности научного знания
Научные открытия конца 19 – начала 20 веков и их влияние на формирование неклассического типа научной рациональности. Своеобразие неклассического типа научной рациональности.
Научная революция, коренным образом изменившая классические представления, совершилась в результате происходивших с конца XIX а научных открытий революционного значения, таких, как делимость атома, специальная и общая теория относительности, квантовая теория, квантовая химия, генетика, концепция нестационарной Вселенной, общая теория систем.
В итоге на основе специальной теории относительности и принципов квантовой механики утверждается квантово-релятявистское научное миропонимание. Такой принцип квантовой механики, как принцип дополнительности, играет конструктивную роль в синтезе классических и неклассических представлений о микропроцессах. Допускается истинность различающихся теоретических описаний одной и той же физической реальности.
Если в классической науке идеал объяснения и описания предполагал характеристику объекта «самого по себе», без указания на средства его исследования, то в квантово-релятивистской физике в качестве необходимого условия объективности объяснения и описания выдвигается требование четкой фиксации особенностей средств наблюдения, которые взаимодействуют с объектом. Новая система познавательных идеалов и норм обеспечивала расширение поля исследуемых объектов, открывая пути к исследованию сложных систем.
Становление неклассической научной картины мира осуществлялось на основе представлений о мире как сложной системе, включающей микро-, макро- и мегамиры. В итоге создавались предпосылки для построения целостной картины природы, в которой прослеживается иерархическая организованность Вселенной как сверхсложной системы.
К концу XIX века стало известно о существовании электронов и радиоактивность. Э. Резерфорд, бомбардируя атомы α-частицами, обнаружил плотное ядро, сосредотачивающее в себе почти всю массу атома, с положительным значением заряда. И на основе этого результата, он построил так называемую «планетарную» модель атома.
Но такая система из заряженных частиц согласно законам электродинамики не просуществовала бы и миллиардной доли секунды; поскольку электроны, вращаясь, должны были бы постоянно излучать энергию, замедляться и, в конце концов, падать на ядро.
Этот парадокс в теории, вызвавший «кризис» всей науки в целом, стал отправной точкой более глубоких исследований и теоретических разработок в физике «микромира».
Датский физик Н. Бор существенно усовершенствовал модель атома Резерфорда. Он постулировал существование стационарных орбит, на которых электроны вопреки законам электродинамики не излучают энергии. И только при переходе электрона с одной орбиты на другую происходит излучение (или поглощение) энергии в виде определенной порции – кванта излучения. Таким образом, в отличие от классических представлений физика «микромира» оказалась квантованной. Получалось, что энергия от одной частицы к другой могла передаваться не непрерывно, а только в виде порций…
Чуть позже Л. де Бройль высказал смелую гипотезу о том, что частице материи присуще непрерывность (свойство волны) и дискретность (квантованность). Это явление получило название корпускулярно-волнового дуализма; в определённых условиях частицы вещества обнаруживают волновые свойства, а частицы поля – корпускулярные.
Теперь в теоретических построениях для описания этих противоречивых свойств материи потребовалось ввести волновую функцию, которая определяла вероятность нахождения частицы в том или ином месте. Таким образом, физическое описание явлений «микромира» стало неопределённым. Из этого принципа, в частности, следовало, что аппаратура принципиально не способна точно определять одновременно координаты и импульсы частиц. Стало быть, согласно принципу неопределённости, невозможно точно предвидеть будущее.
К революционным открытиям XX века бесспорно относится создание А. Эйнштейном специальной, а затем и общей теории относительности. В этих теориях радикальному пересмотру были подвергнуты фундаментальные понятия науки – понятия пространства и времени. В специальной теории относительности обособленные понятия пространства и времени объединились в целостный «пространственно-временной континуум». Теперь у объекта, разогнавшегося до скорости близкой к скорости света, линейные размеры укорачивались, масса возрастала, а внутреннее время жизни, соответственно, увеличивалось…
В общей теории относительности пространственно-временные свойства мира, в конечном итоге, определялись гравитационным полем. Ибо именно благодаря влиянию тел с огромными массами происходит искривление путей движения световых лучей.
