Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Двоичная система счисления.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
251.9 Кб
Скачать

Перевод дробных чисел методом Горнера[править | править исходный текст]

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,11012

(0 + 1)/2 = 0,5 (0,5 + 0)/2 = 0,25 (0,25 + 1)/2 = 0,625 (0,625 + 1)/2 = 0,8125

Ответ: 0,11012= 0,812510

Преобразование десятичных чисел в двоичные[править | править исходный текст]

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой :

19 /2 = 9 с остатком 1 9 /2 = 4 c остатком 1 4 /2 = 2 без остатка 0 2 /2 = 1 без остатка 0 1 /2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т.д. В результате получаем число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные[править | править исходный текст]

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);

  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;

  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 20610=110011102 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 • 2 = 0,232 0,232 • 2 = 0,464 0,464 • 2 = 0,928 0,928 • 2 = 1,856 0,856 • 2 = 1,712 0,712 • 2 = 1,424 0,424 • 2 = 0,848 0,848 • 2 = 1,696 0,696 • 2 = 1,392 0,392 • 2 = 0,784 и т. д.

Таким образом 0,11610 ≈ 0,00011101102

Получим: 206,11610 ≈ 11001110,00011101102

Применения[править | править исходный текст] в цифровых устройствах[править | править исходный текст]

Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) — нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.

  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора, что не будет способствовать помехоустойчивости и надёжности хранения информации.[источник не указан 1171 день]

  • Двоичная арифметика является довольно простой. Простыми являются таблицы сложения и умножения — основных действий над числами.

В цифровой электронике одному двоичному разряду в двоичной системе счисления соответствует (очевидно) один двоичный разряд двоичного регистра, то есть двоичный триггер с двумя состояниями (0,1).

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде. Например, число −510 может быть записано как −1012 но в 32-битном компьютере будет храниться как 111111111111111111111111111110112.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]