
- •Числовая последовательность
- •Определение
- •Примеры
- •Операции над последовательностями
- •Подпоследовательности
- •Примеры
- •Свойства
- •Предельная точка последовательности
- •Предел последовательности
- •Некоторые виды последовательностей
- •Ограниченные и неограниченные последовательности
- •Критерий ограниченности числовой последовательности
- •Свойства ограниченных последовательностей
- •Бесконечно большие и бесконечно малые последовательности
- •Свойства бесконечно малых последовательностей
- •Сходящиеся и расходящиеся последовательности
- •Свойства сходящихся последовательностей
- •Монотонные последовательности
- •Фундаментальные последовательности
- •Предел числовой последовательности
- •История
- •Определение
- •Обозначения
- •Свойства
- •Свойства Арифметические свойства
- •Свойства сохранения порядка
- •Другие свойства
- •Предел на бесконечности по Коши
- •Окрестностное определение по Коши
- •Обозначения
- •Свойства пределов числовых функций
- •Примеры
- •Бесконечно малая и бесконечно большая
- •Исчисление бесконечно малых и больших
- •Бесконечно малая величина
- •Бесконечно большая величина
- •Свойства бесконечно малых
- •Сравнение бесконечно малых
- •Определения
- •Примеры сравнения
- •Эквивалентные величины Определение
- •Теорема
- •Примеры использования
- •Исторический очерк
- •Замечательные пределы
- •Первый замечательный предел
- •Второй замечательный предел
- •Раскрытие неопределённостей
- •Числовой ряд
- •Определение
- •Операции над рядами
- •Критерий абсолютной сходимости
- •«O» большое и «o» малое
- •Определения
- •Обозначение
- •Другие подобные обозначения
- •Примеры использования
- •История
- •Непрерывная функция
- •Определения
- •Комментарии
- •Связанные определения Точки разрыва
- •Свойства Локальные
- •Глобальные
- •Полунепрерывность
- •Односторонняя непрерывность
- •Непрерывность почти всюду
- •Производная функции
- •Геометрический и физический смысл производной Тангенс угла наклона касательной прямой
- •Скорость изменения функции
- •Производные высших порядков
- •Способы записи производных
- •Примеры
- •Правила дифференцирования
- •Производная вектор-функции по параметру
- •Примеры
- •Касательная прямая
- •Строгое определение
- •Замечание
- •Касательная как предельное положение секущей
- •Касательная к окружности
- •Свойства
- •Вариации и обобщения Односторонние полукасательные
Предел на бесконечности по Коши
Пусть числовая функция задана на множестве , в котором отыщется сколь угодно большой элемент, то есть для всякого положительного в нём найдётся элемент, лежащий за границами отрезка . В этом случае число называется пределом функции на бесконечности, если для произвольного положительного числа
отыщется отвечающее ему положительное число такое, что для всех точек, превышающих по абсолютному значению, справедливо неравенство .
Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий правее него. В этом случае число называется пределом функции на плюс бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, лежащих правее , справедливо неравенство .
Пусть числовая функция задана на множестве , в котором для любого числа найдётся элемент, лежащий левее него. В этом случае число называется пределом функции на минус бесконечности, если для произвольного положительного числа отыщется отвечающее ему положительное число такое, что для всех точек, лежащих левее
, справедливо неравенство .
Окрестностное определение по Коши
Пусть функция определена на множестве , имеющем элементы вне любой окрестности нуля. В этом случае точка называется пределом функции на бесконечности, если для любой её малой окрестности найдётся достаточно большая окрестность нуля, что значения функции в точках, лежащих вне этой окрестности нуля, попадают в эту окрестность точки .
Обозначения
Если в точке у функции существует предел, равный , то говорят, что функция стремится к при стремлении к , и пишут одним из следующих способов:
, или
.
Если у функции существует предел на бесконечности, равный , то говорят, что функция стремится к при стремлении к бесконечности, и пишут одним из следующих способов:
, или
.
Если у функции существует предел на плюс бесконечности, равный , то говорят, что функция стремится к при стремлении к плюс бесконечности, и пишут одним из следующих способов:
, или
.
Если у функции существует предел на минус бесконечности, равный , то говорят, что функция стремится к при стремлении к минус бесконечности, и пишут одним из следующих способов:
, или
.
Свойства пределов числовых функций
Пусть даны функции
и
.
Одна и та же функция в одной и той же точке может иметь только один предел.
Доказательство
Доказательство
методом от противного. Пусть существует
и
и
.
Предположим A1
< A2.
Возьмём
,
такое что A1
+ ε < A2
− ε, т.е.
.
,
т.е.
A1
− ε
< f(x)
< A1
+ ε.
,
т.е.
A2
− ε
< f(x)
< A2
+ ε.
Тогда получаем
Противоречие.
Значит предел единственный.
Сходящаяся функция локально сохраняет знак. Более обще,
где
—
проколотая окрестность точки a.
В частности, функция, сходящаяся к положительному (отрицательному) пределу, остаётся положительной (отрицательной) в некоторой окрестности предельной точки:
Сходящаяся функция локально ограничена в окрестности предельной точки:
Отделимость от нуля функций, имеющих предел, отличный от нуля.
Операция взятия предела сохраняет нестрогие неравенства.
Правило двух милиционеров
Предел суммы равен сумме пределов:
Предел разности равен разности пределов:
Предел произведения равен произведению пределов:
Предел частного равен частному пределов.