
- •Глава I.
- •Глава II.
- •Глава III. Термодеструктивные процессы 36
- •Глава IV.
- •Глава V.
- •Глава VI.
- •Глава VII.
- •Глава VIII.
- •Глава IX.
- •Глава X.
- •Глава XI.
- •Глава XII.
- •Глава XIII.
- •Глава XIV.
- •Предисловие
- •Условные обозначения на схемах технологических установок
- •Глава I Подготовка нефтей к переработке
- •Установка стабилизации нефтей на промысле
- •Установка обессоливания и обезвоживания нефтей на нпз
- •Глава II Первичная перегонка нефти и вторичная перегонка бензиновых дистиллятов
- •Установка атмосферной перегонки нефти
- •Установка атмосферно-вакуумной перегонки нефти
- •Установка вторичной перегонки бензинового дистиллята
- •Атмосферно-вакуумная установка с секцией вторичной перегонки бензина
- •Установка двухступенчатой вакуумной перегонки мазута
- •Установка вакуумной перегонки для разделения масляных фракций, гачей и петролатумов
- •Глава III Термодеструктивные процессы Установки висбрекинга тяжелого сырья
- •Установки деструктивной перегонки мазутов и гудронов
- •Установка термического крекинга для производства термогазойля
- •Установка замедленного коксования в необогреваемых камерах
- •Установка непрерывного коксования в псевдоожиженном слое кокса (термоконтактный крекинг)
- •Установка пиролиза нефтяного сырья
- •Глава IV Термокаталитические процессы Каталитический крекинг
- •Установка каталитического крекинга с прямоточным реактором
- •Установка каталитического крекинга 1-а/1-м
- •Каталитический риформинг и изомеризация
- •Установка риформинга со стационарным слоем катализатора
- •Установка риформинга с движущимся слоем платинового катализатора
- •Установка каталитической изомеризации пентанов и гексанов
- •Глава V Гидрогенизационные процессы Гидроочистка и гидрообессеривание
- •Установка гидроочистки дистиллята дизельного топлива
- •Установка гидрокрекинга в стационарном слое катализатора
- •Установка гидрокрекинга с псевдоожиженным слоем катализатора
- •Установка гидродоочистки нефтяных масел
- •Установка гидроочистки керосина с применением высокотемпературной сепарации
- •Гидроочистка тяжелых и вакуумных газойлей
- •Глава VI Разделение и переработка газов Установка очистки углеводородных газов от сероводорода раствором этаноламина
- •Установка сернокислотного алкилирования изобутана бутиленами
- •Установка для производства водорода методом паровой каталитической конверсии легких углеводородов
- •Глава VII Деасфальтизация нефтяных остатков
- •Установка одноступенчатой деасфальтизации гудронов жидким пропаном
- •Установка двухступенчатой деасфальтизации гудронов жидким пропаном
- •Установка деасфальтизации бензином (процесс добен)
- •Глава VIII Очистка масляного сырья избирательными растворителями
- •Установка очистки нефтяных масляных фракций фенолом
- •Установка очистки нефтяных масляных фракций фурфуролом
- •Установка очистки нефтяных остатков парными растворителями без предварительной деасфальтизации сырья
- •Глава IX Депарафинизация и обезмасливание нефтяного сырья Низкотемпературные процессы
- •Установка депарафинизации с двухступенчатым фильтрованием
- •Установка депарафинизации и обезмасливания
- •Установка глубокой депарафинизации масляных рафинатов
- •Установка депарафинизации с применением кристаллизатора смешения
- •Отделение регенерации растворителей из растворов депарафинированного масла, гача или петролатума
- •Депарафинизация с использованием карбамида
- •Установка карбамидной депарафинизации инхп ан АзСср и внипИнефти
- •Установка карбамидной депарафинизации ГрозНии и Грозгипронефтехима
- •Глава X Адсорбционные процессы очистки, доочистки и разделения Установка непрерывной адсорбционной очистки масляного сырья
- •Установка контактной доочистки масел отбеливающими землями
- •Установка «Парекс»
- •Глава XI Производство пластичных смазок Общая характеристика технологических стадий и процессов производства смазок
- •Установка периодического производства мыльных и углеводородных смазок
- •Установка периодического производства мыльных смазок с применением контактора
- •Установка полунепрерывного производства мыльных смазок
- •Установка полунепрерывного производства смазок на сухих мылах
- •Установка непрерывного производства мыльных смазок
- •Установка производства смазок на неорганических загустителях
- •Глава XII Производство битума, технического углерода и других продуктов Битумная установка непрерывного действия колонного типа
- •Битумная установка с реактором змеевикового типа
- •Технологическая схема производства технического углерода термическим разложением и гранулирования «мокрым» способом
- •Установка производства серы из технического сероводорода
- •Установка производства серной кислоты из сероводорода
- •Глава XIII Очистка нефтепродуктов растворами щелочи
- •Очистка углеводородных газов
- •Очистка жидких углеводородов
- •Очистка раствором щелочи с применением катализатора
- •Глава XIV Комбинированные установки производства нефтепродуктов
- •Литература
- •Глава I
- •Глава II
- •Глава III
- •Глава IV
- •Глава V
- •Глава VI
- •Глава VII
- •Глава VIII
- •Глава IX
- •Глава X
- •Глава XI
- •Глава XII
- •Глава XIII
- •Глава XIV
- •Приложение Материальные балансы процессов. Качество сырья и продуктов. Гидрогенизационные процессы получения моторных топлив.
- •Процессы гидрообессеривания деасфальтизатов и мазутов.
- •Гидрогенизационные процессы переработки нефтяных остатков.
- •Гидрогенизационные процессы при получении нефтяных масел.
Очистка раствором щелочи с применением катализатора
В современной нефтезаводской практике, особенно за рубежом, часто используют щелочную очистку топливных дистиллятов от меркаптанов с применением процесса окисления кислородом воздуха в присутствии катализаторов и различных добавок-усилителей (антиокислителей) [4, 5, б]. Наибольшее распространение из этих методов получили процессы Бендера и «Мерокс».
Процесс Бендера используется для очистки бен-зинов, керосинов и реактивных топлив от меркаптанов при содержании их в сырье не более 0,08 % (масс.). Очистка заключается в переводе меркаптанов в дисульфиды при их окислении кислородом воздуха на стационарном слое катализатора — сульфида свинца. Схема процесса Бендера приведена на рис. XIII-7.
На нагнетательной линии насоса 1 сырьевой поток делится на две части: одна проходит сборник 2 с серой и направляется в смеситель 3; другая — непосредственно в смеситель 3, подаются также свежий и циркулирующий растворы щелочи и воздух. Эта реакционная смесь проходит слои катализатора снизу вверх в реакторах 4. Воздух от прореагировавшей смеси отделяется затем в сепараторе 5. Нижний жидкий продукт сепаратора направляется в отстойник 6 для отделения отработанного раствора щелочи. Очищенный продукт выводится с установки. Температура процесса в зависимости от очищаемого сырья колеблется в пределах 70—125 °С; расход раствора щелочи незначителен.
Процесс «Мерокс» применяется преимущественно для удаления меркаптанов из бензинов. Окисление меркаптанов в дисульфиды проводится кислородом воздуха при обычной температуре в присутствии хелатных соединений металлов в качестве катализатора. Схема установки приведена на рис. XIII-8.
Очищаемый бензин насосом / направляется в низ. колонны 2 для извлечения меркаптанов. В верхнюю часть реактора насосом 5 подается раствор щелочи с катализатором (так называемый раствор «мерокс»), Из бензина в результате контакта с раствором мероке удаляются низкомолекулярные меркаптаны. Оставшиеся в продукте высокомолекулярные меркаптаны переводятся в дисульфиды в реакторе 7, куда вместе с бензином подается воздух и дополнительное количество раствора мерокс. С верха реактора 7 смесь поступает в отстойник 8 для разделения. Отстоявшийся и очищенный бензин выводится из отстойника сверху, а раствор мерокс с низа отстойника идет на рециркуляцию.
Раствор мерокс с извлеченными меркаптанами с низа колонны 2 направляется в регенератор 3, где С помощью воздуха меркаптаны окисляются в дисульфиды, не растворимые в растворе мерокс. В сепараторе 4 отделяется отработанный воздух, а в сепараторе 6 — дисульфиды, которые с верха аппарата удаляются с установки. Регенерированный раствор мерокс с низа аппарата 8 насосом 5 возвращается в процесс.
Глава XIV Комбинированные установки производства нефтепродуктов
Одно из основных направлений технического прогресса в нефтеперерабатывающей и нефтехимической промышленности — строительство высокопроизводительных комбинированных установок. Высокие технико-экономические показатели достигнуты при эксплуатации отечественных комбинированных установок глубокой переработки нефти (ГК-3), производства топлив (ЛК-бу), установок деасфальтиза-ции и селективной очистки масел, депарафинизации масел и обезмасливания парафинов. Готовятся к пуску отечественные комбинированные маслоблоки КМ-1 и КМ-2, комбинированные установки глубокой переработки нефти К.Т-1 и производства ароматических углеводородов и др. [1—5].
На рис. XIV-1 и XIV-2 показаны поточные схемы комбинированных установок ЛК-бу (проект Ленгипронефтехима) и ГК-3 (проект Грозгипронефтехима), а также приведен выход получаемой продукции на нефть (в скобках показан также выход компонентов на загрузку блока или секцию установки). В состав комбинированной установки ЛК-бу входят блок двухступенчатого обессоливания сырой нефти в горизонтальных электродегидраторах; блок двухколонной атмосферной перегонки нефти и стабилизации и фракционирования бензина; блок каталитического риформинга бензина с предварительной гидроочисткой сырья; секции гидроочистки керосина и дизельного топлива; блок газофракционирования.
В блоке газофракционирования (рис. XIV-3) предусмотрена единая централизованная деэтани-зация головных фракций, поступающих после стабилизации продуктов из всех секций установки; в этом блоке вырабатываются сухой газ, пропановая, изо-бутановая и н-бутановая фракции, а также фракция Cg и выше [6].
На установке ЛК-6у вырабатывают продукты высокого качества: компонент автобензина с октановым числом 90—95 (исследовательский метод), гидро-очищенный керосин, малосернистое дизельное топливо с содержанием серы менее 0,2 % (масс.), мазут.
В состав комбинированной установки ГК-3 входят блоки атмосферной перегонки нефти и вакуумной перегонки мазута, блоки легкого термического крекинга гудрона и каталитического крекинга вакуумного газойля, а также блок газофракционирования. Основные продукты установки: головная фракция стабилизации, высокооктановый компонент бензина, котельное топливо, а также компоненты бензина и дизельного топлива.
На комбинированных установках по глубокой переработке мазута КТ-1 (проект Грозгипронефтехима) применена двухколонная схема вакуумной перегонки сырья с получением вакуумного дистиллята (сырья для каталитического крекинга) и гудрона (сырья висбрекинга). В первую вакуумную колонну, в которой из мазута отгоняется широкая дистиллятная фракция, водяной пар не подается. Дополнительная отгонка дистиллята из гудрона осуществляется во второй вакуумной колонне. Такая схема перегонки мазута, а также максимальное использование аппаратов воздушного охлаждения, размещение конденсаторов в колонне позволило снизить остаточное давление и повысить конец кипения дистиллятной фракции до 515—520°С [17].
Процесс висбрекинга гудрона проводят при температуре до 500 °С. При переработке смеси гудрона западно-сибирской нефти с 5 % (масс.) тяжелого газойля каталитического крекинга на блоке висбрекинга получают: 76,2 % (масс.) сырья для коксования, 6 % (масс.) компонента котельного топлива, 10,1 % (масс.) компонента дизельного топлива, 2,95 % (масс.) нестабильного бензина и 3,75 % (масс.) жидкого газа. Гидроочистка сырья каталитического крекинга предусмотрена в двух параллельно работающих реакторах со стационарным слоем алюмоникельмолибденового катализатора. Крекинг гидроочищенного сырья осуществляется в прямоточном реакторе на микросферическом цеолитсодержащем катализаторе. На блоке каталитического крекинга, ректификации, абсорбции и газофракционирования продуктов при переработке вакуумного дистиллята западно-сибирской нефти предусматривается выработка 44,7 % (масс.) стабильного бензина, 11,84 % (масс.) бутан-бутиленовой фракции, -5,32 % (масс.) пропан-пропиленовой фракции и 15,1 % (масс.) сырья для производства технического углерода (фракция 270—420 °С); выход кокса не более 6 % (масс.).
Материальный баланс комбинированной установки К.Т-1 при переработке мазута западно-сибирской нефти [7]:
Взято, % (масс.) Мазут Вакуумный дистиллят Водородсодержащий газ (96 % об. Н2) |
90,64 9,36 0,62 |
Итого |
100,62 |
Получено, % (масс.) Компонент автобензинов АИ-93 и АИ-98 Пропан-пропиленовая фракция Бутан-бутиленовая фракция Гидроочищенное дизельное топливо (фракция 180— 350 °С) Компоненты дизельного топлива фракция 195—270 °С (после каталитического крекинга) фракция 160—350 °С (после висбрекинга) Стабильный бензин после гидроочистки и висбрекинга (фракция до 160 °С) Сырье для коксования Сырье для технического углерода (фракция 270—420 °С) Компонент котельного топлива Гудрон Углеводородный газ для производства водорода Водородсодержащий газ (75 % об. Н2) Сероводород Топливный газ Кокс Потери |
19,52 2,32 5,18 9,61
2,58 3,61 1,74 27,23 6,60 3,53 6,24 0,6 0,36 0,98 2,39 2,61 1,60 |
Итого |
100,62 |
Сравнение технико-экономических показателей комбинированной установки глубокой переработки мазута К.Т-1 с комплексом отдельно стоящих установок показало [7], что эксплуатационные затраты снижаются на 40,1 % (отн.), производительность труда при переработке сырья на одного работающего возрастает в 2,5 раза, общие капитальные вложения снижаются на 36,2 % (отн.), площадь сокращается в 3 раза. Указанные преимущества достигаются за счет комбинирования и укрупнения технологических установок, применения современной технологии, высокого уровня технических решений, рациональной компоновки оборудования.
Аппараты и оборудование комбинированных установок объединяются в укрупненные блоки секции, взаимное расположение которых определяется технологической схемой, предусматривающей жесткие связи между ними. Застраиваемая территория используется, таким образом, с большей эффективностью.
Основная цель компоновки аппаратуры и оборудования — это технологическая целесообразность и компактность. Так, на установках ЛК-бу все компрессоры для сжатия циркуляционных водородсо-держащих газов секций риформинга и гидроочистки расположены в одном здании — компрессорной. Электрооборудование находится в двух электрораспределительных помещениях. При размещении аппаратуры и оборудования внутри секции и при расположении последних на площадке кроме технологических особенностей учитывают возможность проведения строительных и монтажных работ индустриальными методами и возможность подъезда во время ремонта и замены оборудования кранов и механизмов.
Группа трубчатых печей обслуживается общей дымовой трубой, что позволяет создать мощный блок утилизации избыточного тепла отходящих газов и обеспечить большую степень их рассеивания.
По данным Ленгипронефтехима, в результате комбинирования процессов на установках ЛК-бу удельные капитальные вложения снижаются на 11—12 %, стоимость переработки нефти на 9—10 %> прибыль возрастает на 6 %, а производительность труда на 45—50 %, территория установки сокращается более чем в два раза [2].
Вместе с тем более сложная эксплуатация технологических блоков предъявляет и более жесткие требования к надежной и бесперебойной работе аппаратов и оборудования, часть которого монтируется без резерва.
Ленгипронефтехим выполнил технический проект новой комбинированной установки ЛК.-9М, в состав которой включены современные технологические аппараты и оборудование для производства высококачественных товарных бензинов, предусмотрено использование процесса низкотемпературной изомеризации. Изменена схема газофракционирования (см. рис. XIV-4): из смеси легких углеводородов выделяется этан-пропановая фракция с последующим разделением ее на фракции сухого газа и пропана. Такое решение позволило повысить температуру конденсации верхнего продукта этановой колонны до 30—35 °С (против 5 °С на установке ЛК-6у), при давлении 3,0—3,5 МПа. В результате для конденсации верхнего продукта в зимнее время можно использовать оборотную воду, а в летнее время — захоложенную воду с температурой 7 °С [6].
Основные преимущества комбинированных установок:
сокращенные сроки строительства в связи с уменьшением строительно-монтажных работ;
меньшая длина дорогостоящих коммуникаций (технологические трубопроводы, кабели, трассы контроля и автоматики);
меньшая территория установки;
централизация управления всеми технологическими процессами (из одного помещения);
размещение однотипного оборудования и в специальных помещениях;
более низкие затраты на сооружение общезаводских объектов; резервуарных парков, сетей водопровода, канализации, автодорог и т. д.;
более высокая производительность труд.