- •Содержание
- •1. Глоссарий . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
- •2. Конспект лекционных занятий
- •3. Лабораторные занятия
- •4. Практические занятия
- •5. Самостоятельная работа студента
- •7. Экзаменационные вопросы . . . . . . . . . . . . . . . . . . . . . . . . .165
- •8. Технические средства обучения
- •9. Список рекомендуемой литературы . . . . . . . . . . . . . . 168
- •Глоссарий
- •2. Конспект лекционных занятий
- •Модуль 1: введение в технологию очистки и разделения нефтяного сырья
- •Лекция №1
- •Назначение, развитие и способы очистки масляного сырья
- •Вопросы для самопроверки
- •Лекция №2 Способы очистки масляных дистиллятов. Поточные схемы производства нефтепродуктов
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Лекция № 4 Очистка серной кислотой
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Лекция №6 Деасфальтизация остатков пропаном
- •Вопросы для самопроверки
- •Лекция №7 Селективная очистка масляных фракций и остатков. Очистка фенолом
- •Вопросы для самопроверки
- •Лекция №8 Селективная очистка фурфуролом, парными растворителями. Характеристика растворителей
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Лекция №10 Депарафинизация с применением карбамида
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Лекция №13 Доочистка фильтрованием. Непрерывная очистка. Гидроочистка масел
- •Вопросы для самопроверки
- •Вопросы для самопроверки
- •Лекция №15 Приготовление товарных нефтепродуктов
- •Вопросы для самопроверки
- •Лабораторные занятия
- •Лабораторная работа №1
- •Тема: Очистка нефтяных фракций селективными растворителями
- •В экстракторе периодического действия
- •1. Теоретическая часть
- •2. Аппаратура и реагенты
- •Порядок выполнения работы
- •Составление отчета
- •Контрольные вопросы
- •Лабораторная работа №2 Тема: Селективная очистка масляных дистиллятов в роторно-дисковом экстракторе
- •Теоретическая часть
- •2. Аппаратура и реагенты
- •Последовательность выполнения работы
- •3. Составление отчета
- •Контрольные вопросы
- •Лабораторная работа №3 Тема: Селективная очистка масляных дистиллятов фурфуролом методом непрерывной противоточной экстракции
- •Теоретическая часть
- •Аппаратура и реагенты
- •3. Порядок выполнения работы
- •3.1. Подготовка экстракционной колонны
- •3.2. Выход на режим экстракции
- •Проведение экстракции
- •3.4. Окончание опыта
- •4.Составление отчета
- •5. Техника безопасности при проведении работы
- •Теоретическая часть
- •Аппаратура и материалы
- •3. Порядок выполнения работы
- •4.Оформление отчета
- •Техника безопасности
- •Теоретическая часть
- •Порядок выполнения работы
- •Оформление отчета
- •4. Техника безопасности
- •Теоретическая часть
- •Аппараты и материалы
- •3. Порядок выполнения работы
- •4.Оформление отчета
- •5.Техника безопасности
- •Контрольные вопросы
- •Лабораторная работа №7 перколяция парафина (церезина)-сырца
- •Теоретическая часть
- •Аппаратура
- •Порядок выполнения работа
- •Составление отчета
- •5. Техника безопасности
- •Контрольные вопросы
- •Лабораторная работа №8 Тема: Адсорбционная очистка масляных дистиллятов
- •Теоретическая часть
- •2. Аппаратура и материалы
- •Порядок выполнения работ
- •4. Особенности техники безопасности при проведении работы
- •Контрольные вопросы
- •Лабораторная работа №9 Тема: Контактная доочистка масел
- •Теоретическая часть
- •2. Аппаратура
- •3. Порядок выполнения работы
- •Оформление отчета
- •Техника безопасности
- •Контрольные вопросы
- •Лабораторная работа №10 Тема: Приготовление и анализ пластических смазок
- •1.Теоретическая часть
- •2. Аппаратура и реактивы:
- •3. Порядок выполнения работы
- •4. Исследование реологических свойств смазок
- •Контрольные вопросы
- •4. Практические занятия
- •Практическое занятие №1
- •Тема: Колонны для отгонки избирательных растворителей.
- •Расчет рафинатной колонны (2 часа)
- •Задачи для решения
- •Практическое занятие №2 Тема: Расчет экстракционной колонны установки деасфальтизации пропаном (2 часа)
- •Задачи для решения
- •Практическое занятие №3 Тема: Расчет испарителя пропана (3 часа)
- •Задачи для решения
- •Практическое занятие №4 Тема: Процесс экстракции и расчет экстракционных колонн очистки масел избирательными растворителями (3 часа)
- •1, 2, 3 И 4 — экстракторы, 5, 6, 7 и 8 —смесители.
- •Задачи для решения
- •Практическое занятие №5 Тема: Расчет фурфурольной колонны (2 часа)
- •Задачи для решения
- •Практическое занятие №6 Тема: Расчет кристаллизаторов установок депарафинизации (2 часа)
- •Задачи для решения
- •5. Самостоятельная работа студентов с преподавателем (срсп)
- •Тема 1. Нефть как сырье для получения минеральных масел
- •Контрольные вопросы
- •Тема 2. Сырьевой потенциал масляного производства Казахстана
- •Контрольные вопросы
- •Тема 3. Современные тенденции технологии процесса гидрокрекинга
- •Преимущества процесса гидрокрекинга масляных дистиллятов и его экономические показатели
- •Контрольные вопросы
- •Литература
- •Тема 4. Современные методы производства высокоиндексных масел
- •Контрольные вопросы
- •Литература
- •Темы курсовых проектов
- •6. Самостоятельная работа студентов (срс)
- •Самостоятельная работа студента по данной дисциплине заключается в изучении технологических схем установок масляного производства.
- •Тема №1: Общая принципиальная схема очистки
- •Нефтяного сырья избирательными растворителями
- •Тема 2: Одноступенчатая деасфальтизация гудрона пропаном
- •Тема 3: Технологическая схема установки двухступенчатой деасфальтизации гудрона пропаном
- •Тема 4: Установка очистки масел фенолом
- •Тема 5: Установка очистки масел фурфуролом
- •Тема 6: Очистка масел парными растворителями
- •Тема 7: Депарафинизация масел
- •Тема 8: Карбамидная депарафинизация дизельной фракции
- •VIII-промежуточная фракция с установки.
- •Тема 9: Обезмасливание гача и петролатума с применением избирательных растворителей
- •Тема 10: Установка депарафинизации и обезмасливания
- •1, 4, 7, 22-Приемники; 2, 5, 8-вакуумные фильтры; 3, 6, 9, 31-сборники;
- •Тема 11: Контактная доочистка
- •Тема 12: Адсорбционное извлечение жидких парафинов
- •Тема 13: Установка гидродоочистки нефтяных масел
- •Тема 14: Гидроочистка топливных дистиллятов
- •Тема 15: Гидродоочистка масляных дистиллятов
- •7. Экзаменационные вопросы
- •8 Технические средства обучения
- •Список рекомендуемой литературы
- •8.1 Основная литература
- •8.2 Дополнительная литература
Вопросы для самопроверки
Каково целевое назначение процесса пропановой деасфальтизации? Какие применяются кроме пропана растворители?
Как влияет фракционный и химический состав гудрона на выход и качество деасфальтизата?
Влияние технологических параметров на выход и качество деасфальтизата.
Приведите принципиальную технологическую схему установки одноступенчатой пропановой деасфальтизации гудрона.
Литература
Черножуков Н.И. Технология переработки нефти и газа. Часть III М., Химия,1982.
Гуревич И. Л. «Технология переработки нефти и газа» Ч.1. М. Химия 1972 С. 346.
Ахметов С.А. Технология глубокой переработки нефти и газа. Учебное пособие для вузов. Уфа, Гилем, 2002, 672 с.
Альбом технологических схем под ред. Ю.И. Дытнерского. М., Химия, 1973, 269 с.
Лекция №7 Селективная очистка масляных фракций и остатков. Очистка фенолом
Сырьем процесса селективной очистки служат масляные дистилляты и деасфальтизаты, а также фракции дизельных топлив. При помощи селективных растворителей из нефтяного сырья могут быть извлечены такие нежелательные компоненты, как непредельные углеводороды, серо- и азотосодержащие соединения, полициклические ароматические и нафтено-ароматические углеводороды с короткими боковыми цепями, а также смолистые вещества. Особо значение процесс селективной очистки имеет для производства нефтяных масел, т.к. в результате существенно улучшаются два важнейших эксплуатационных свойств масел: стабильность против окисления и вязкостно-температурные свойства. Помимо этого, очищенный продукт (рафинат) имеет по сравнению с сырьем меньшие плотность, вязкость, кислотность и особенно — коксуемость и более высокую температуру застывания; в нем меньше серосодержащих соединений и он менее интенсивно окрашен. В качестве избирательных растворителей для очистки нефтяных фракций испытано много соединений. Однако лишь немногие применяются на практике, т. к. растворители для данного процесса должны:
1) обладать высокими избирательностью и растворяющей способностью по отношению к извлекаемым компонентам, сырья при умеренных температурах, способствующих интенсивному контакту сырья с растворителем;
2) плохо растворяться в смеси желательных компонентов;
3) иметь плотность, отличающуюся от плотности сырья, для быстрого и четкого разделения фаз;
4) обладать умеренной температурой кипения, отличающейся от температуры кипения сырья, что весьма важно при регенерации растворителя из образующихся фаз;
5) быть химически и термически стабильными, т. е. не изменять своих свойств при эксплуатации и хранении;
6) химически не взаимодействовать с компонентами очищаемого сырья;
7) плохо растворяться в воде и растворять воду не образовывать в ней азеотропных смесей;
8) не вызывать коррозии аппаратуры, быть нетоксичным, не ядовитыми, взрыво-пожаробезопасными, дешевыми и недефицитными.
На современных установках селективной очистки нефтяного сырья в качестве растворителей в основном применяют фенол и фурфурол, а также парный растворитель - смесь фенола и крезола с пропаном. Преимуществом фенола перед фурфуролом является его большая растворяющая способность в отношении полициклических ароматических углеводородов, смол и серосодержащих соединений, что особенно важно при очистке высококипящих фракций и остатков. Кратность фенола к сырью обычно меньше, чем фурфурола. Однако фенол несколько уступает фурфуролу по избирательности, в результате при равном расходе растворителя на очистку одного того же сырья выход рафината фурфурольной очистки обычно выше, чем фенольной. Для очистки масляных фракций и деасфальтизатов из сернистых нефтей используют преимущественно фенол; а фурфурол более эффективен в тех случаях, когда из-за низких критических температур растворения с сырьем нельзя использовать сухой фенол, т. е. для низкокипящих фракций и фракций, обогащенных ароматическими углеводородами. Парный растворитель, т.е. смесь фенола и крезола с пропаном (селекто), используют в дуосол-процессе, где одновременно осуществляются процессы деасфальтизации и селективной очистки. При выборе растворителя для очистки конкретного сырья учитывают результаты предварительных исследований, позволяющие установить примерные выход и качество получаемых продуктов, а также технико-экономические показатели процесса.
Главными факторами, определяющими эффективность процесса, являются температура и кратность растворителя к сырью; эти факторы зависят от характера очищаемого сырья и требований к качеству очищенного продукта. При очистке нефтяного сырья избирательными растворителями необходимо поддерживать такую температуру экстракции, при которой система состоит из двух фаз - рафинатного раствора, содержащего очищенный продукт (рафинат) и сравнительно небольшую часть растворителя, и экстрактного раствора, состоящего в основном из растворителя и растворенных в нем нежелательных компонентов (экстрактора). Это условие выполнимо при температурах очистки ниже КТР данного сырья в данном растворителе; таким образом, верхним температурным пределом очистки является, КТР сырья в данном растворителе. Низкокипящие дистилляты, особенно вторичного происхождения (например, фракции газойля каталитического крекинга), могут иметь такую низкую КТР в данном растворителе, что смесь необходимо охлаждать до образования двухфазной системы или понижать растворяющую способность растворителя добавлением к нему антирастворителя, чтобы повысить КТР смеси. Очистку нефтяного сырья необходимо проводить при оптимальной температуре (или интервале температур), когда достигаются лучшие показатели по избирательности и растворяющей способности растворителя, т.е. достаточно высокий выход рафината заданных качеств. Эта температура различна для разных растворителей и очищаемого сырья и до настоящего времени определяется в каждом конкретном случае экспериментально. С повышением температуры очистки выхода рафината понижается, его индекс вязкости вначале повышается, а затем также понижается. Максимумом индекса вязкости определяется оптимальная температура очистки, выше которой наряду со значительным возрастанием растворяющей способности растворителя, резко снижается его избирательность в отношении нежелательных компонентов очищаемого сырья, что приводит к ухудшению качества очищенного продукта. Выход и качество рафината зависят также от кратности растворителя к сырью. Для одного и того же вида сырья и при неизменной температуре очистки с увеличением кратности растворителя к сырью снижается выход рафината и повышается его качество. Расход растворителя на очистку обусловлен его свойствами, требованиями к качеству рафината, фракционным и химическим составом сырья и способом экстракции. На очистку одного и того же сырья для получения равного выхода рафината расход растворителя тем больше, чем меньше его растворяющая способность. Для получения рафината более высоких качеств очистку необходимо проводить при более высоком расходе растворителя. При выборе кратности растворителя необходимо учитывать также, что чрезмерный его расход может привести не только к уменьшению выхода рафината и в некоторых случаях - ухудшению его качества, но и к снижению производительности установки по сырью. Результаты селективной очистки в значительной степени зависят от соблюдения заданных температурных пределов выкипания сырья и возможного сужения этих пределов при вакуумной перегонке мазута. При очистке избирательными растворителями широких нефтяных фракций вследствие близких значений растворимости низкокипящих желательных компонентов и более высококипящих нежелательных создается опасность удаления из сырья наряду с последними ценных компонентов очищаемой фракции. Поэтому для селективных компонентов предпочтительно сырье более узкого фракционного состава. Дистилляты одного и той же нефти с повышенными температурами кипения необходимо очищать при более высоких температурах и кратности растворителя к сырью. Желательные степень очистки нефтяного сырья и выход рафината достигаются также применением наиболее современных методов экстракции. На современных промышленных установках селективную очистку осуществляют методом непрерывной противоточной экстракции. Преимущества его перед другими методами (однократным и многократным периодическими) заключается в просторе аппаратурного оформления, меньшим расходе растворителя при большем выходе рафината несколько лучшего качества. При экстрагировании методом противотока очищаемый продукт по мере непрерывного движения навстречу растворителю все в большей степени освобождается от нежелательных компонентов, извлекаемых растворителем. Так как при этом КТР очищаемого сырья все время повышается, то для доизвлечения остающихся в рафинате нежелательных компонентов необходимо более высокая температура экстракции. С этой целью создают разность между температурами растворителя и очищаемого сырья, входящих в систему экстракции, которую называют температурным градиентом экстракции. Температурный градиент экстракции неодинаков при использовании различных растворителей и сырья; устанавливают его экспериментально.
Очистка фенолом. Фенол, в качестве избирательного растворителя, хорошо растворяет ароматические углеводороды с короткими боковыми цепями, особенно полициклические, и смолы, молекулы которых обогащены ароматическими циклами. Азотсодержащие соединения полностью переходят в экстракт. В зависимости от качества сырья и условий очистки содержание серы в результате очистки фенолом снижается на 30-50%. Вследствие высокой растворяющей способности фенола КТР его смеси сырьем низки, что затрудняет его применение при очистке маловязких масляных дистиллятов, т.к. низкая температура экстракции лимитируется высокой температурой кристаллизации фенола. В заводской практике растворяющую способность фенола уменьшают добавлением к нему воды, однако при этом снижается и его избирательность. С увеличением обводненности фенола повышается выход рафинатов, но ухудшается их качество. При добавлении воды к фенолу снижается также температура его плавления. Воду вводят в несколько точек по высоте экстракционного аппарата; в верхнюю часть, в середину и в нижнюю часть. Наиболее эффективен ввод воды в зону экстрактного раствора, т.е. в низ экстрактора, что способствует выделению рециркулята, и как следствие, увеличению отбора рафината. Вода, вводимая в экстракционную колонну, практически вся отводится в составе экстрактного раствора. Для снижения растворяющей способности фенола к нему можно добавить и другой растворитель с меньшей растворяющей способностью (этиловый спирт, этиленгликоль), однако промышленного применения этот способ не получил. Экстракцию сырья фенолом осуществляют в насадочных, сетчатых или тарельчатых колоннах. Для более четкого выделения из сырья нежелательных компонентов должна быть установлена разность температур между верхом и низом колонны - температурный градиент экстракции. Эта величина составляет 10-15°С при очистке дистиллятных фракций и 15-20°С при очистке деасфальтизатов. Температура экстракции в зависимости от сырья составляет 45-115°С. расход фенола для различного сырья и с учетом требований к качеству рафината изменяется в широких пределах: при очистке дистиллятных фракций массовая кратность фенола к сырью составляет 1,5÷3,5:1. При выработке высокоиндексных масел кратность фенола к сырью достигает 2,5÷3,5:1 для дистиллятного сырья и 3,5÷4,5:1 для остаточного сырья.
Промышленные установки: В заводской практике эксплуатируется несколько типов промышленных установок селективной очистки масел фенолом. Наиболее широко применяют типовые установки. На них очищают как дистиллятное, так и остаточное сырье. Разновидностями типовых установок являются двухблочные укрупненные (повышенной производительности) и двухступенчатые установки.
Типовая установка: сырье насосом прокачивается через теплообменники, где нагревается горячим экстрактом до, температуры около 90°С, и паровой подогреватель и с температурой 110-115°С подается на верхнюю тарелку абсорбера. Подача сырья регулируется в зависимости от уровня жидкости в абсорбера. Подача сырья регулируется в зависимости от уровня жидкости в абсорбере регулятором расхода, клапан которого установлен на выходе насоса. Вниз абсорбера поступает пары азеотропной смеси. Сырье стекает по тарелкам абсорбера и, встречаясь с поднимающимся навстречу сырью парами, поглощает фенол. Пары воды сверху абсорбера выводятся в конденсатор-холодильник, конденсат собирается в приемнике, откуда направляется на производство перегретого водяного пара. Сырья с абсорбированным в нем фенолом забирается снизу абсорбера насосом, охлаждается в холодильнике до требуемой температуры и вводится в среднюю часть экстракционной колонны. Наверх этой колонны из приемника подается фенол, предварительно нагретый в паровом подогревателе. Для снижения растворяющей способности фенола в нижнюю часть колонны из емкости предусмотрена подача фенольной воды. Для равномерного распределения потоков по сечению колонны жидкости вводят в колонну через маточники. Температура растворов в верхней и средней частях колонны регулируется нагревом сырья и фенола. Необходимая температура низа колонны регулируется циркуляцией части экстрактного раствора насосом через холодильники. В экстракционной колонне образуется два слоя: рафинатный и экстрактный. Независимо от качества очищаемого сырья уровень раздела фаз поддерживается в колонне при помощи дифманометрического или электрического уровнемера немного выше распределителя сырья. Рафинатный раствор, содержащий до 20% фенола, сверху экстракционной колонны поступает в промежуточный приемник, откуда направляется в секцию регенерации растворителя. Экстрактный раствор, содержащий фенол, экстракт и практически всю вводимую в колонну воду, поступает снизу экстракционной колонны на прием насоса, при помощи которого он подается в секцию регенерации растворителя.
1. Регенерация растворителя из рафинатного и экстрактного раствора.
2. Двухблочная укрупненная (блок экстракции и регенерации фенола из рафинатного раствора, позволяющих одновременно перерабатывать сырье двух видов - дистиллятное и остаточное или два разных дистиллята) установка селективной очистки фенолом;
3. Двухступенчатая установка селективной очистки фенолом.
