Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК ХТПСМ изд. третье.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
6.04 Mб
Скачать

Вопросы для самопроверки

1. Укажите целевое назначение и разновидности процессов депарафинизации кристаллизацией.

2. Укажите основные закономерности застывания углеводородных компонентов масел.

3. Какова кристаллическая структура твердых углеводородов? Укажите их групповой химический состав.

4. Каковы влияния природы, состава и кратности растворителя на процесс депарафинизации?

5. Объясните влияние качества сырья и технологических параметров на процесс депарафинизации.

6. Приведите принципиальную технологическую схему отделений кристаллизации и фильтрации установки двухступенчатой депарафинизации масел.

7. Укажите отличительные особенности процесса глубокой депарафинизации.

8. Дайте краткую характеристику другим разновидностям сольвентной депарафинизации кристаллизацией.

Литература

  1. Черножуков Н.И. Технология переработки нефти и газа. Часть III М., Химия,1982.

  2. Гуревич И. Л. «Технология переработки нефти и газа» Ч.1. М. Хи­мия 1972 С. 346.

  3. Ахметов С.А. Технология глубокой переработки нефти и газа. Учебное пособие для вузов. Уфа, Гилем, 2002, 672 с.

  4. Альбом технологических схем под ред. Ю.И. Дытнерского. М., Химия, 1973, 269 с.

  5. Справочник нефтепереработчика. Под ред. Ластовкина Г.А. М., Химия, 1986, с. 648.

  6. Яковлев С.П., Радченко Е.Д. и др. Кристаллизатор пульсационного смешения. ХТТМ, №4, 2000, с. 12-15.

  7. Бакулев П.В., Стариков А.С. Модернизация скребковых кристаллизаторов установок депарафинизации магнитными датчиками вращения скребковых валов. Нефтепереработка и нефтехимия, №8, 2006, с. 47.

Лекция №10 Депарафинизация с применением карбамида

Карбамидная депарафинизация - это новый процесс, применяемый при производстве топлив и маловязких масел. В результате получения не только низкозастывающее топливо или маловязкие масла, но и жидкие или мягкие па­рафины, используемый для производства синтетических жирных кислот и спиртов, α-олефинов, моющих средств, белково-витаминных концентратов, по­верхностно-активных веществ (сульфонатов, сульфонолов) и т.д. карбамидная депарафинизация принципиально отличается от сольвентной депарафинизации, т.к. в этом случае для выделения твердых углеводородов сырье или его раство­ры не нужно охлаждать до низких температур. Карбамид NH2CONH2, по дан­ным ренгеноструктурного анализа, может существовать в двух кристалличе­ских модификациях: тетрагональной и гексогональной. Чистый карбамид име­ет тетрагональную структуру, каждая кристаллическая ячейка которой состоит из четырех молекул. Это плотно упакованный кристалл, не имеющий свобод­ных пространств, в которых могли бы разместиться молекулы другого вещест­ва. В процессе комплексообразования происходит перестройка кристалличе­ской структуры карбамида из тетрагональной в гексогональную. Молекулы карбамида в гексагональной структуре, так же как и в тетрагональной, связаны между собой водородными связями, которые возникают между атомами водо­рода аминной группы одних молекул и кислородными атомами других. Для об­разования комплекса с карбамидом важны не химическая природа вещества, а конфигурация и размеры его молекул. Комплексообразование с карбамидом -физическое явление. При образовании комплекса карбамида с углеводородами устанавливается равновесие так же, как и в случае химических реакций. Следо­вательно, этот процесс подчиняется законам протекания обратимых реакций и изменение условий комплексообразования влияет на скорость и полноту извле­чения комплексообразующих углеводородов. В процессе карбамидной депара­финизации применяют растворители, снижающие вязкость среды и (вследст­вие создания тесного контакта между карбамидом и углеводородами) улуч­шающие массообмен, что при прочих равных условиях обеспечивает большую полноту извлечения комплексообразующих компонентов. Для создания гомо­генной системы растворитель должен в той или иной степени растворять и сы­рье, и карбамид. В качестве растворителей для карбамидной депарафинизации предложено много соединений, из которых наибольшее распространение полу­чили изооктан, петролейный эфир, бензин, лигроин, бензол, хлористый мети­лен, изопропанол и т.д. Карбамидная депарафинизация проводится при участии активаторов, ускоряющих образование карбамидного комплекса. К их числу относятся некоторые спирты (метанол, этанол, изопропанол), низкомолекуляр­ные кетоны (ацетон, метилэтилкетон), раствор последнего в бензоле, хлорорганические соединения (хлористый метилен, дихлорэтан), вода и т.д. Полярные растворители (некоторые спирты, кетоны и хлорорганические соединения) в условиях карбамидной депарафинизации выполняют одновременно функции растворителя и активатора.

Основные факторы процесса: выход и качество продуктов получаемых при карбамидной депарафинизации нефтяного сырья, зависят от условий комплексообразования: природы и расхода растворителя и активатора, агрегатного состояния и расхода карбамида, температуры, длитель­ности и интенсивности контактирования компонентов смеси.

Качество сырья: эффективность процесса карбамидной депарафинизации зависит от фракцион­ного состава сырья. При повышении температур выкипания фракции снижается извлечение карбамидом твердых углеводородов, что объясняется изменением их химического состава. Таким образом, применение карбамидной депарафи­низации ограничено температурами выкипания сырья. С утяжелением сырья в твердых углеводородах снижается содержание комплексообразующих компо­нентов и возрастает содержание циклических углеводородов с боковыми цепя­ми изостроения, имеющих высокую температуру застывания, но не способных к образованию комплекса.

Растворители и активаторы. Назначение раство­рителей в процессе карбамидной депарафинизации заключается в снижении вязкости сырья, предотвращении кристаллизации твердых углеводородов при температуре процесса и улучшении отделения, твердой фазы (комплекса) от раствора депарафинированного продукта, активаторы способствуют комплексообразованию карбамида с углеводородами и значительно ускоряют этот про­цесс. Выбор растворителя и активатора и их оптимальных количеств зависит от качества сырья, природы растворителя и активатора, их взаимной совместимо­сти с точки зрения скорости и глубины комплексообразования, а также от тре­бований к получаемым продуктам.

Расход и агрегатное состояние карбами­да: оптимальный расход карбамида, необходимый для достаточного выхода це­левого продукта с заданными свойствами, подбирают экспериментально для каждого вида сырья. С увеличение расхода карбамида выход и качество полу­чаемых продуктов изменяются до определенного предела в зависимости от со­держания в сырье углеводородов, способных образовывать комплекс с карба­мидом в условиях процесса. С повышением концентрации парафиновых угле­водородов в сырье и молекулярной массы сырья растет оптимальный расход карбамида, необходимого для его депарафинизации. Глубина извлечения ком­плексообразующих углеводородов зависит от свойств технологического карба­мида, т.е. размеров его кристаллов, активности, наличия примесей. В кристал­лическом состоянии карбамид более активен, чем в микрокристаллическом.

Температура: одним из основных преимуществ карбамидной депарафиниза­ции по сравнению с выделением твердых углеводородов кристаллизацией из растворов в избирательных растворителях является то, что этот процесс не тре­бует затрат для достижения низких температур. Обычно депарафинизацию нефтяного сырья карбамидом проводят при температурах 20-45°С. при перехо­де от низкокипящих фракций к высококипящим растет молекулярная масса их компонентов, а, следовательно, и вязкость. Поэтому для обеспечения достаточ­ного контакта веществ необходимо повышать температуру, в результате вяз­кость сырья снижается, взаимная растворимость компонентов увеличивается, что способствует образованию комплекса. Высокомолекулярные углеводороды образуют комплексы с карбамидом при повышенных температурах, а для во­влечения в комплекс углеводородов меньшей молекулярной массы процесс ве­дут при комнатной и даже более низкой температуре; что дает возможность се­лективно извлекать комплексообразующие компоненты из нефтяного сырья. Способы контактирования: существуют несколько способов контактирования нефтяного сырья с карбамидом; из них наиболее эффективно перемешивание, применяемое на промышленных установках карбамидной депарафинизации. Длительность и интенсивность перемешивания существенно влияют на глубину извлечения из сырья комплексообразующих углеводородов. Время, необходи­мое для максимального извлечения твердых углеводородов, возрастает пропор­ционально росту вязкости сырья; следовательно, при повышении температур выкипания нефтяной фракции скорость комплексообразования снижается. Так как массообмен происходит на границе раздела жидкость —жидкость (раствор карбамида) или жидкость - твердый карбамид, то чем интенсивнее перемеши­вание, тем более скорость комплексообразования. Этот показатель является од­ним из факторов, определяющих производительность установок карбамидной депарафинизации. Обычно длительность перемешивания составляет 30-60 мин при частоте вращения мешалки 60 мин-1.

Технологическая схема процесса. Разработаны и внедрены различные варианты промышленных и полупромыш­ленных установок карбамидной депарафинизации, различающиеся по агрегат­ному состоянию применяемого карбамида, природе растворителя и активатора, оформлению реакторного блока, способу отделения и разложения комплекса, каждый из которых имеет свои преимущества и недостатки. Независимо от технологической схемы процесс депарафинизации карбамидом включает сле­дующие основные стадии: смешение сырья с растворителем, карбамидом и ак­тиватором; образование комплекса; отделение комплекса от растворителя депарафинируемого продукта; промывки и разложении комплекса; отделение рас­твора парафина от карбамида (раствора карбамида); регенерация растворителя из растворов депарафинируемого продукта и парафина; регенерации карбами­да.

Описание процесса. Сырье смешивается с растворителем и активатором и поступает в реактор, куда подается карбамид. В реакторе образуется комплекс. Смесь комплекса и раствора депарафинированного продукта поступает в блок отделения твердой фазы от жидкой, которое осуществляется фильтрованием, центрифугированием или отстаиванием. В результате получают два продукта: комплекс углеводородов с карбамидом и раствор депарафинированного про­дукта. Комплекс после промывки растворителем направляется в аппарат для разложения при помощи горячей воды или растворителя. Затем растворы пара­фина и комплекса в секции центрифугированием или отстаиванием разделяют­ся на раствор парафина и раствор карбамида. Растворы депарафинированного продукта и парафина поступают в секции регенерации растворителя. Следую­щая секция служит для регенерации карбамида. Депарафинированный продукт и парафин направляются на дальнейшую переработку, а регенерированный рас­творитель и карбамид возвращаются на смешение с сырьем.

Основные аппа­раты установок:

1) Смесители. Одним из наиболее распространенных аппа­ратов для образования комплекса карбамида с углеводородами является обычный смеситель, оборудованный мешалкой, в который подают сырье, раствори­тель, карбамид или его раствор. Снизу аппарата отводится смесь комплекса и раствора депарафинированного продукта. Для поддержания необходимой тем­пературы комплексообразованеия предусмотрена циркуляция смеси через теп­лообменник (нагрев или охлаждение). Смесители используют на установках депарафинизации как с кристаллическим карбамидом, так и с его раствором в воде или спиртах.

2) Реакторы. На установках карбамидной депарафинизации с использованием водно-спиртового раствора карбамида комплекс образования в реакторе. Он состоит из четырех последовательно соединенных горизонталь­ных одноходовых кожухотрубчатых теплообменников с коридорным располо­жением труб, в которых раствор сырья контактирует с водно-спиртовым рас­твором карбамида. При постепенном понижении температуры в мягких услови­ях теплообмена карбамид образует комплекс с углеводородами. Охлаждаемый поток сырья движется по межтрубному пространству, а охлаждающая вода - по трубам. Внутри реакторов поддерживается необходимая разность температур (4-6°С) между охлаждением потоком и водой.

При депарафинизации дизельных топлив в качестве аппаратов для образования карбамидного комплекса предло­жены: перколяторы, принцип действия которых заключается в пропускании смеси сырья, активатора и растворителя снизу вверх через неподвижный слой карбамида; противоточные колонны непрерывного действия, в которых опус­кающиеся частицы кристаллического карбамида, или карбамида, смоченного активатором, контактируют с поднимающимся сырьем или его раствором. Но такое оформление блока комплексообразования на промышленных установках еще не осуществлено.

Комплекс карбамида можно отделять от раствора депарафинированного продукта фильтрованием, отстаиванием и центрифугированием.

Фильтры. Одним из наиболее растворенных аппаратов для отделения комплекса является барабанные вакуумные фильтры обычной конструкции, где комплекс отделяет­ся от раствора депарафинированного продукта и промывается растворителем для удаления из него этого продукта. Скорость фильтрования и полнота разде­ления твердой и жидкой фаз при использовании фильтров зависят от структуры полученного комплекса.

Отстойники. Для отделения комплекса, полученно­го при депарафинизации водно-спиртовыми растворами карбамида, применяют отстойники, в которых осуществляются отделение твердой фазы от депарафи­нированного продукта, промывка комплекса и отделение его от промывной жидкости. Отстойник представляет собой вертикальный цилиндрический аппа­рат с коническими днищем, состоящий из трех или четырех секций равного объема. В верхнюю секцию подают смесь комплекса и депарафинированного продукта, и комплекс отделяется в ней от раствора депарафинированного про­дукта. В остальных секциях комплекс промывается жидкостью (например, фракцией 180-240°С), смешиваемой в определенном количестве (50-75 % на сырье) с комплексом, забираемым из каждой секции насосом. Минимальная длительность пребывания продуктов депарафинизации в каждом секции от­стойника 1 ч, скорость отстаивания 2,5-3,5 мм/с, промытый комплекс выводит­ся снизу отстойника.

Центрифуги: для отделения комплекса применяют саморазгружающиеся центрифуги непрерывного действия, которые позволяют не только отделить комплекс от раствора депарафинированного продукта, но и удалить большую часть жидких углеводородов, не извлеченных из комплекса при его промывке.