Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Муталов Дамир 7 М биология.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
2.46 Mб
Скачать

Физиология памяти. Не рвная ткань.

Материальным носителем памяти является нервная ткань. Она состоит из клеток – нейронов. Нейрон состоит из самого тела клетки и отростков: коротких сильно разветвленных дендритов и одного длинно аксона. Сигнал по нервной клетке идет от дендритов, через тело нейрона к аксону.  Весь нейрон покрыт двухслойной липидной мембраной. Аксон покрыт слоем миелина – жироподобного вещества. Он препятствует переходу импульса на соседние нейроны. Синапс – место контакта между двумя нейронами. Служит для передачи нервного импульса.9

Нервно-мышечные связи необходимы развивающейся мышце для течения и завершения образовательного процесса, специфического для активно функционирующей структуры. Таким образом, стойкая дифференцировка мышечных волокон при регенерации находится в прямой зависимости от восстановления контактов мышцы с нервной системой (Р. П. Женевская, 1958, 1974). К аналогичному заключению о необходимости контакта нервной и регенерирующей мышечной ткани для трофики последней, ее роста, дифференцировки ее мышечных волокон пришли в своих исследованиях З. П. Игнатьева (1951, 1955) и М. Ф. Попова (1954). Окончательная дифференцировка регенерирующих мышечных волокон происходит лишь после врастания в них нервных волокон. Регенерация костной ткани в депервированной конечности (пересечение передних корешков периферических нервов) подавляется (Р. Л. Русанов, 1961) и, наоборот, репаративная регенерация этой ткани возможна при налаживании связи нервных проводников с очагом повреждения (Г. А. Емец, 19. Щитовидная железа уже с самого начала своей гормональной функции подчиняется нервному контролю (М. С. Мицкевич, 1954; Б. В. Алешин, Н. С. Демиденко, 1958, и др.).

Способы питания живых организмов

Автотрофы

Автотрофы никого не едят, органические вещества делают сами из неорганических.

  • Автофототрофы – энергию получают из света (фотосинтез). К фототрофам относятся растения и фотосинтезирующие бактерии.

  • Автохемотрофы – энергию получают при окислении неорганических веществ (хемосинтез). Например,

    • серобактерии окисляют сероводород до серы,

    • железобактерии окисляют двухвалентное железо до трехвалентного,

    • нитрифицирующие бактерии окисляют аммиак до азотной кислоты.

Сходство и различие фотосинтеза и хемосинтеза

  • Сходства: все это пластический обмен, из неорганических веществ делаются органические (из углекислого газа и воды – глюкоза).

  • Различие: энергия для синтеза при фотосинтезе берется из света, а при хемосинтезе - из окислительно-восстановительных реакций.

Гетеротрофы

Гетеротрофы получают органические вещества в готовом виде, с пищей. К гетеротрофам относятся животные, грибы и большинство бактерий.

Способы питания гетеротрофов 1. Хищники – убиваю жертву, а затем съедают (лев, щука, оса). 2. Паразиты – поедают живую жертву (вирус гриппа, туберкулёзная палочка, дизентерийная амеба, аскарида и т.п.) 3. Cапрофиты (сапротрофы) – питаются мертвыми организмами (личинки мясных мух, плесневые грибы, бактерии гниения). 4. Cимбионты – получают питание от другого организма на взаимовыгодной основе. Например:

  • Микориза (грибокорень) – симбиоз гриба и растения. Растение дает грибу глюкозу (которую делает при фотосинтезе), а гриб дает растению воду и минеральные соли.

  • Лишайник – симбиоз грибов и водорослей. Водоросли дают грибу глюкозу, а гриб водорослям – соли и воду.

  • Клубеньковые бактерии живут в специальных утолщениях (клубеньках) на корнях растений семейства бобовых. Растения дают бактериям глюкозу, а бактерии дают растениям соли азота, которые они получают при фиксации азота воздуха.

Питание живых организмов

  • Способы питания живых организмов

  • Особенности питания зеленых растений

  • Особенности питания гетеротрофных организмов

  • Цепи питания

Гетеротрофы Паразиты

Гетеротрофы Паразиты

Гетеротрофы

Выводы

  • Нельзя прожить, не питаясь

  • Пища дает энергию для жизни

  • Пищевые цепи – это цепи передачи энергии от организма к организму

  • Энергия Солнца усваивается и преобразуется только зелеными растениями

Витамины

Витами́ны (от лат. vita — «жизнь») — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищиАвтотрофные организмы также нуждаются в витаминах, получая их либо путем синтеза, либо из окружающей среды. Так, витамины входят в состав питательных сред для выращивания организмов фитопланктона[1]. Витамины содержатся в пище (или в окружающей среде) в очень малых количествах, и поэтому относятся к микронутриентам.

Наука на стыке биохимиигигиены питанияфармакологии и некоторых других медико-биологических наук, изучающая структуру и механизмы действия витаминов, а также их применение в лечебных и профилактических целях, называется витаминологией.[2]

Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в составе активных центров большого количества разнообразных ферментов, либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.

Витамины не являются для организма поставщиком энергии, однако витаминам отводится важнейшая роль в обмене веществ.

Концентрация витаминов в тканях и суточная потребность в них невелики, но при недостаточном поступлении витаминов в организме наступают характерные и опасные патологические изменения.

Большинство витаминов не синтезируются в организме человека. Поэтому они должны регулярно и в достаточном количестве поступать в организм с пищей или в виде витаминно-минеральных комплексов и пищевых добавок. Исключения составляют витамин К, достаточное количество которого в норме синтезируется в толстом кишечнике человека за счёт деятельности бактерий, и витамин В3, синтезируемый бактериями кишечника из аминокислоты триптофана.

С нарушением поступления витаминов в организм связаны 3 принципиальных патологических состояния: недостаток витамина — гиповитаминоз, отсутствие витамина — авитаминоз, и избыток витамина — гипервитаминоз.

Известно около полутора десятков витаминов. Исходя из растворимости, витамины делят на жирорастворимые — ADEK и водорастворимые — все остальные (BC и др.). Жирорастворимые витамины накапливаются в организме, причём их депо являются жировая ткань и печень. Водорастворимые витамины в существенных количествах не депонируются (не накапливаются) и при избытке выводятся с водой. Это объясняет то, что гиповитаминозы довольно часто встречаются относительно водорастворимых витаминов, а гипервитаминозы чаще наблюдаются относительно жирорастворимых витаминов.

Витамины отличаются от других органических пищевых веществ тем, что не включаются в структуру тканей и не используются организмом в качестве источника энергии (не обладают калорийностью).