
- •Атомно-кристаллическая структура металлов. Типы кристаллических решёток.
- •Дефекты кристаллической решетки металлов.
- •Кристаллизация металлов и сплавов.
- •Механические свойства металлов.
- •Твёрдость и методы ее определения.
- •Прочность. Испытание на прочность и построение диаграммы растяжения.
- •8. Основные сведения о металлических сплавах: понятие сплав, система, компонент, фаза.
- •9. Структурные образования при кристаллизации сплавов: твердые растворы, механические смеси, химические соединения.
- •10. Диаграмма состояния железо-цементит.
- •15. Закалка стали. Охлаждающие среды.
- •18. Классификация и маркировка стали.
- •19. Конструкционные стали: классификация, маркировка, свойства и применение.
- •20. Шарикоподшипниковые стали.
- •21. Рессорно-пружинные стали: свойства, термообработка, структура в рабочем состоянии.
- •22. Коррозионностойкие стали. Классификация, структура, свойства.
- •23. Инструментальные стали: классификация, маркировка.
- •24. Быстрорежущие стали. Маркировка, свойства, термообработка.
- •25. Штамповые стали. Свойства, термообработка, структура.
- •26. Твердые сплавы. Классификация, получение, свойства, применение.
- •27. Чугуны: классификация, маркировка, применение.
- •28. Сплавы на основе меди: состав, маркировка, свойства и применение.
- •29. Сплавы на основе алюминия: состав, маркировка, свойства и применение.
- •30. Получение чугуна. Исходные материалы, сущность процесса доменной плавки.
- •32. Физико-химические процессы при выплавке чугуна.
- •33. Продукция доменного производства.
- •34. Основные физико-химические процессы получения стали.
- •35. Выплавка стали. Исходные материалы, их подготовка, сущность процесса.
- •36. Способы выплавки стали.
- •37. Производство стали в мартеновских печах. Материалы, устройство мартеновской печи. Продукция мартеновского производства.
- •38. Производство стали в кислородных конверторах и электропечах. Материалы, устройство, продукция производства.
- •40. Общие сведения о литейном производстве. Современное состояние и роль литейного производства в машиностроении.
- •41. Элементы литейной формы.
- •42. Теоретические основы производства отливок. Литейные свойства сплавов.
- •43. Последовательность технологических операций получения заготовок литьем.
- •45. Получение отливок в песчано-глиняных формах: сущность, достоинства и недостатки.
- •46. Специальные методы литья.
- •47. Литье по выплавляемым моделям: сущность, достоинства, недостатки.
- •48. Литье в металлические формы: сущность, достоинства и недостатки.
- •51. Классификация процессов обработки давлением.
- •52. Нагрев при обработке металлов давлением. Понятие о температурном интервале обработки металлов давлением. Типы нагревательных устройств.
- •53. Горячая объемная штамповка. Сущность, схемы и способы гош: в открытых и закрытых штампах, их особенности, преимущества и недостатки.
- •54. Холодная объемная штамповка. Разновидности холодной объемной штамповки (высадка, выдавливание, объемная формовка, чеканка).
- •55. Прокатка металлов. Продукция, инструмент, оборудование и технология производства основных видов проката.
- •56. Ковка. Сущность процесса, основные операции, инструмент, оборудование. Технологические особенности ковки. Продукция ковки, область применения.
- •57. Волочение и прессование металлов. Сущность способа, инструмент и оборудование. Продукция.
- •58. Классификация способов сварки, область их применения, физическая сущность сварки, свариваемость материалов.
- •59. Ручная дуговая сварка. Сущность, применяемое оборудование и материалы.
- •Сварочные выпрямители
- •60. Типы электродов для ручной дуговой сварки.
- •61. Автоматическая дуговая сварка под флюсом. Сущность, применяемое оборудование и материалы.
- •62. Дуговая сварка в защитных газах. Сущность, применяемое оборудование и материалы.
- •63. Сварка давлением. Сущность, применяемое оборудование и материалы.
- •65. Диффузионная сварка. Сущность, применяемое оборудование и материалы.
- •66. Сварка трением. Сущность, применяемое оборудование и материалы.
- •67. Холодная сварка. Сущность, применяемое оборудование и материалы.
- •68. Сварка взрывом. Сущность, применяемое оборудование и материалы.
- •69. Виды дефектов сварных соединений и способы их предотвращения и устранения.
- •70. Физико-механические основы обработки металлов резанием. Классификация движений в металлорежущих станках.
- •71. Схемы обработки резанием.
- •72. Станки для обработки резанием. Классификация металлорежущих станков.
- •73. Технологические возможности способов резания. Точение. Сверление. Протягивание. Фрезерование.
- •74. Токарная обработка: сущность, инструменты, параметры режима резания.
- •75. Обработка заготовок фрезерованием: элементы резания, инструмент, оборудование.
- •76. Способы получения порошковых материалов (механические и физико-механические).
62. Дуговая сварка в защитных газах. Сущность, применяемое оборудование и материалы.
Сварка в защитных газах — один из распространенных способов сварки плавлением. По сравнению с другими способами он имеет ряд преимуществ, из которых главные: возможность визуального, в том числе и дистанционного, наблюдения за процессом сварки; широкий диапазон рабочих параметров режима сварки в любых пространственных положениях; возможность механизации и автоматизации процесса, в том числе с применением робототехники; высокоэффективная защита расплавленного металла; возможность сварки металлов разной толщины в пределах от десятых долей до десятков миллиметров.
Определения, классификация и основные схемы
Сварка в защитных газах (СЗГ) — общее название разновидностей дуговой сварки, осуществляемой с вдуванием через сопло горелки в зону дуги струи защитного газа. В качестве защитных применяют: инертные (Аr, Не), активные (СO2, O2, N2, Н2) газы и их смеси (Аr+СO2+O2, Аr+O2, Аr+ +СO2 и др.).
Разновидности СЗГ можно классифицировать по таким признакам, как: тип защитных газов, характер защиты в зоне сварки, род тока, тип электрода и т. д.
По совокупности основных физических явлений процесс дуговой сварки в защитных газах можно классифицировать по двум основным схемам — это сварка неплавящимся (СНЭЗГ) (рис. 2.2, а) и плавящимся (СПЭЗГ) (рис. 2.2,б) электродами.
Сварочная дуга в среде защитных газов характеризуется относительно большим разрядным током (от 5 до 500 А и выше) и низким катодным падением напряжения.
63. Сварка давлением. Сущность, применяемое оборудование и материалы.
Под сваркой давлением понимают все виды сварки (контактная, трением, холодная, взрывом, диффузионная и т.д.), при которых происходит пластическая деформация металлов в зоне контакта, в результате чего образуется сварное соединение. Этот процесс становится возможным при условии образования между двумя деталями межатомных связей кристаллических решеток. Для образования сварного соединения поверхности деталей сближают между собой настолько, что происходит взаимодействие атомов металла, расположенных на одной поверхности с атомами металла другой поверхности. После чего происходит объединение электронных оболочек, формируя металлургические связи. Граница соединения перестает быть барьером и происходит взаимная диффузия атомов, сопровождающаяся структурными изменениями в зоне контакта и деформацией с выделением большого количества тепла. Добиваются этого различными методами.
Качество сварного соединения, полученного давлением, во многом зависит от подготовки поверхностей, от способности металла подвергаться пластической деформации и от приложенных усилий. В некоторых случаях свариваемые поверхности подвергают предварительному нагреву до температуры меньшей, чем требуется для образования жидкой фазы. Такую сварку называют термокомпрессионной[1].
Сварка с применением давления, осуществляемая за счет пластической деформации свариваемых частей при температуре ниже температуры плавления и происходит в твердой фазе[2]. Способами сварки давлением можно соединять практически любые металлические сплавы в однородном и разнородном сочетаниях, металлы с полупроводниками и керамиками, пластмассы и т. д. Чем выше степень локализации пластической деформации в зоне соединения, тем эффективнее способы сварки в твердой фазе обеспечивают точность размеров изделий, сохранение механических и специальных свойств свариваемых материалов и тем легче они позволяют соединять хрупкие материалы, особенно в разнородных сочетаниях[3].
Способы сварки давлением обеспечивают сварное соединение, прочность которого часто превышает прочность основного металла. Кроме того, в большинстве случаев при сварке давлением не происходит значительных изменений в химическом составе металла, т. к. металл либо не нагревается, либо нагревается незначительно. Это делает способы сварки давлением незаменимыми в ряде отраслей промышленности (электротехнической, электронной, космической и др.)
64. Контактная сварка. Сущность, применяемое оборудование и материалы.
Контактная сварка — один из наиболее распространенных и быстро разбивающихся способов получения неразъемных соединений самых разнообразных конструкционных материалов в широком диапазоне толщин и сечений. В настоящее время ~30 % всех сварных соединений выполняются с помощью контактной сварки, а по существующим прогнозам к 2000 г. доля этого способа в мировом сварочном производстве достигнет 40 %.
Широкое использование и перспективы контактной сварки в промышленности, особенно в массовом производстве, обусловлены следующими причинами:
1. Высокой технико-экономической эффективностью и, в частности, очень высокой производительностью процесса, намного превышающей производительность других способов сварки.
2. Возможностью легкой механизации, автоматизации и роботизации процесса сварки
3. Весьма благоприятным термодеформационным циклом, обеспечивающим достаточно высокое качество соединений большинства конструкционных материалов.
4. Высокой культурой и хорошими гигиеническими условиями технологического процесса.
Контактная сварка — процесс образования неразъемных соединений конструкционных металлов в результате их кратковременного нагрева электрическим током и пластического деформирования усилием сжатия, со стороны электродов.
Контактная сварка — электротермодеформационный процесс, так как нагрев осуществляется проходящим током за счет выделения теплоты на электрических сопротивлениях разных участков соединения, в частности в общем случае и на контактных сопротивлениях, что послужило причиной появления термина «контактная сварка». В других странах (США, Япония, Великобритания) для определения этого способа получения соединений используют термин «сварка сопротивлением», который также подразумевает нагрев металла импульсным проходящим током — за счет действия внутренних источников теплоты. Как и при большинстве других наиболее распространенных способах сварки, например дуговой, металл нагревают до расплавления (точечная сварка, стыковая сварка оплавлением и т. п.), что гарантирует удаление поверхностных пленок и образование физического контакта по заданной площади.
Значительная пластическая деформация зоны сварки позволяет получать высокие механические свойства соединений разных конструкционных металлов, обеспечивает надежный электрический контакт между деталями, устойчивость процесса расплавления металла и защиту его от взаимодействия с окружающей средой (контактная точечная и шовная сварка).
Контактную сварку (табл. XIII.1, рис. XIII.1) осуществляют с применением нагрева и давления, при этом для нагрева используют тепло, выделяющееся в контакте свариваемых частей при прохождении электрического тока.