
- •Разрешение и линиатура
- •Размер пятна лазера и жесткость растровой точки
- •Растровый процессор
- •Полиэстерные печатные формы для фна
- •Задания
- •Контрольные вопросы
- •Повторяемость и геометрические искажения
- •Влияние температуры и относительной влажности воздуха
- •Влияние экспонирующего устройства
- •Разрешение и линиатура
- •Размер пятна лазера и жесткость растровой точки
- •Допустимые типы фотоматериалов и их толщина
- •Оптическая плотность
- •Растровый процессор
- •Полиэстерные печатные формы — новые возможности для фна
- •Primesetter 74. Типовой список оборудования для работы с полиэстером.
- •Подведем итоги
- •Фотонаборные автоматы
- •Дополнительная информация
- •Изображение
Полиэстерные печатные формы — новые возможности для фна
Технологии CtP, цифровая печать для большинства отечественных типографий все еще представляются интересными, но очень дорогими игрушками. Однако мировые тенденции развития полиграфии, постоянно растущий объем малотиражных заказов свидетельствуют о необходимости и неизбежности упрощения технологии печати, сокращения числа технологических операций и времени выполнения заказа. Привычная технология, основанная на фотоформах, уже не может конкурировать с цифровыми печатными машинами и CtP-системами при малых тиражах. Даже при худшем качестве оттиска заказчик зачастую отдает им предпочтение из-за отсутствия ограничений по тиражности, низкой стоимости и оперативности выполнения заказа. Чтобы конкурировать с крупными компаниями, малые и средние типографии должны предлагать более выгодные условия, но инвестировать порядка 200 тысяч долларов в CtP-систему на базе термальных пластин или в цифровую печатную машину редко кому под силу. Каков выход?
|
Рис. 13 Структура полиэстерных форм компании Mitsubishi. Цифрами обозначены: 1. Прозрачный слой с литографическими свойствами; 2. Галогенид серебра; 3. Базовый слой с проявляющими свойствами; 4. Несущий полиэстеровый или бумажный слой; 5. Подложка. |

Основой технологии является полиэстерный рулонный фоточувствительный материал, работающий на принципе внутреннего диффузионного переноса серебра. На рис. 13 показана структура полиэстерных форм компании Mitsubishi. В процессе экспонирования происходит засветка галогенида серебра. При химической обработке осуществляется диффузионный перенос серебра из незасвеченных областей в верхний слой, в дальнейшем восприимчивый к краске. Этот технологический процесс требует негативного экспонирования.
Экспонировать полиэстерные формы, в принципе, способен любой ФНА, но полноценную работу обеспечивают далеко не все производители. Перечислим основные требования к ФНА для экспонирования полиэстерных форм:
Корректная работа с материалами, имеющими толщину, равную толщине стандартных металлических офсетных пластин, т. е. 0,2 мм для печатных машин малого формата и 0,3 мм для печатных машин большого формата.
Негативное экспонирование фотоформ с рабочей областью, превышающей максимальный формат печати.
Наличие системы пробивки приводочных отверстий вдоль длинной стороны формата. Желательна пробивка офсетных приводочных отверстий, соответствующих печатной машине (иначе потребуется устройство для перепробивки отверстий).
Высокая точность отрезки формы необходимой длины (иначе потребуется устройство для обрезки пластин в нужный размер).
Возможность подключения проявочной машины, способной обрабатывать материалы нужной толщины. Для комбинированного режима «пленка + полиэстер» требуется пятисекционная проявочная машина (секция воды и по две секции для обработки пленки и полиэстера).
Процедуры калибровки ФНА и экспонирования полиэстера немного отличаются от работы с пленкой, однако трудностей не вызывают. Некоторые компании выпускают комбинированные пятисекционные проявочные машины, предназначенные для одновременной работы как с фотопленкой, так и с полиэстером. Если оперативное переключение между материалами не требуется, для обработки подойдут обычные проявочные машины для фотоформ, способные работать с нужной толщиной. Наиболее часто применяются материалы с толщиной, соответствующей стандартным монометаллическим пластинам 0,2 мм и 0,3 мм (в зависимости от типа печатной машины).
В качестве конкретного примера состава оборудования рассмотрим комплекс на базе нового автомата Primesetter компании Heidelberg (рис. 14).