
- •1.1. Особенности дальнего транспорта природных газов
- •1.2. Назначение и описание компрессорной станции
- •1.3. Системы очистки технологического газа на кс
- •1.4. Технологические схемы компрессорных станций
- •1.5. Назначение запорной арматуры в технологических обвязках кс
- •12.6. Схемы технологической обвязки центробежного нагнетателя кс
- •1.7. Системы охлаждения транспортируемого газа на компрессорных станциях
- •1.8. Компоновка газоперекачивающих агрегатов на станции
- •1.9. Система импульсного газа
- •1.10. Система топливного и пускового газа на станции
- •1.11 Система маслоснабжения кс и гпа
- •1.12. Типы газоперекачивающих агрегатов, применяемых на кс
- •Показатели злектроприводных агрегатов
- •Показатели газомотокомпрессоров
- •Структура парка гпа в системе оао "Газпром"
- •Показатели перспективных газотурбинных установок нового поколения
- •2.4. Проверка защиты и сигнализации гпа
- •1.13. Нагнетатели природного газа. Их характеристики
- •2.34. Неполнонапорный одноступенчатый нагнетатель 370-18 агрегата гтк-10-4 производства нзл:
- •Характеристики центробежных нагнетателей для транспорта природных газов
- •1.14. Электроснабжение кс
- •Электроснабжение гпа
- •Электроснабжение электроприводной кс
- •Резервные аварийные электростанции
- •Система питания постоянным током автоматики и аварийных насосов смазки гпа, автоматики зру-10 кВ, аварийного освещения
- •1.15. Водоснабжение и канализация кс
- •1.16. Системы пожаротушения
- •Системы пожарообнаружения
- •1.17 Теплоснабжение кс
- •1.18. Организация связи на компрессорных станциях
- •1.19. Электрохимзащита компрессорной станции
- •1.20. Мониезащита на компрессорной станции
- •2.1. Организация эксплуатации цехов с газотурбинным приводом
- •2.2. Схемы и принцип работы газотурбинных установок
- •2.3. Подготовка гпа к пуску
- •2.5. Пуск гпа и его загрузка
- •2.6. Обслуживание агрегата и систем кс в процессе работы
- •2.7. Подготовка циклового воздуха для гту
- •2.8. Очистка осевого компрессора в процессе эксплуатации
- •2.9. Устройство для подогрева всасывающего циклового воздуха. Антиобледенительная система
- •2.10. Противопомпажная защита цбн
- •2.11. Работа компрессорной станции при приеме и запуске очистных устройств
- •2.12. Особенности эксплуатации гпа при отрицательных температурах
- •2.13. Вибрация, виброзащита и вибромониторинг гпа
- •2.14. Нормальная и аварийная остановка агрегатов
- •2.15. Остановка компрессорной станции ключом аварийной остановки станции (каос)
1.1. Особенности дальнего транспорта природных газов
Основные месторождения газа в России расположены на значительном расстоянии от крупных потребителей. Подача газа к ним осуществляется по газопроводам различного диаметра. При прохождении газа возникает трение потока о стенку трубы, что вызывает потерю давления. Для этой цели необходимо строить компрессорные станции (KС), которые устанавливаются на трассе газопровода через каждые 100 -150 км.
Перед подачей газа в магистральные газопроводы его необходимо подготовить к транспорту на головных сооружениях, которые располагаются около газовых месторождений. Подготовка газа заключается в очистке его от механических примесей, осушки от газового конденсата и влаги, а также удаления при их наличии, побочных продуктов: сероводорода, углекислоты и т.д.
При падении пластового давления около газовых месторождений строят так называемые дожимные компрессорные станции, где давление газа перед подачей его на КС магистрального газопровода поднимают до уровня 5,5-7,5 МПа. На магистральном газопроводе около крупных потребителей газа сооружаются газораспределительные станции для газоснабжения потребителей.
На газопроводах в качестве энергопривода КС используются газотурбинные установки, электродвигатели и газомотокомпрессоры - комбинированный агрегат, в котором привод поршневого компрессора осуществляется от коленчатого вала двигателя внутреннего сгорания.
Вид привода компрессорных станций и ее мощность в основном определяются пропускной способностью газопровода. Для станций подземного хранения газа, где требуются большие степени сжатия и малые расходы, используются газомотокомпрессоры, а также газотурбинные агрегаты типа "Солар" и ГПА-Ц-6,3, которые могут обеспечивать заданные степени сжатия. Для газопроводов с большой пропускной способностью наиболее эффективное применение находят центробежные нагнетатели с приводом от газотурбинных установок или электродвигателей.
Режим работы современного газопровода, несмотря на наличие станций подземного хранения газа, являющихся накопителями природного газа, характеризуется неравномерностью подачи газа в течение года. В зимнее время газопроводы работают в режиме максимального обеспечения транспорта газа. В случае увеличения расходов пополнение системы обеспечивается за счет отбора газа из подземного хранилища. В летнее время, когда потребление газа снижается, загрузка газопроводов обеспечивается за счет закачки газа на станцию подземного хранения газа.
Оборудование и обвязка компрессорных станций приспособлены к переменному режиму работы газопровода. Количество газа, перекачиваемого через КС, можно регулировать включением и отключением числа работающих газоперекачивающих агрегатов (ГПА), изменением частоты вращения силовой турбины у ГПА с газотурбинным приводом и т.п. Однако во всех случаях стремятся к тому, чтобы необходимое количество газа перекачать меньшим числом агрегатов, что приводит естественно к меньшему расходу топливного газа на нужды перекачки и, как следствие, к увеличению подачи товарного газа по газопроводу.
Расход
газа, млн.нм/сут, через трубопровод
длиной
км определяется следующей формулой
(при давлении 0,1013 МПа и 20°С):
,
(2.1)
где
- внутренний диаметр газопровода, мм;
и
- давление газа соответственно в начале
и конце участка газопровода, МПа;
0,009 - коэффициент гидравлического
сопротивления;
- относительная плотность газа по
воздуху;
- средняя температура по длине газопровода.
К;
- средний по длине газопровода коэффициент
сжимаемости газа;
- длина участка газопровода, км.
На основании этой формулы можно вычислить пропускную способность газопровода на участке между двумя КС.
С ростом пропускной способности газопроводов за счет увеличения диаметра трубы и рабочего давления растет температура газа, протекающего по трубопроводу. Для повышения эффективности работы газопровода и прежде всего для снижения мощности на транспортировку газа необходимо на выходе каждой КС устанавливать аппараты воздушного охлаждения газа. Снижение температуры необходимо еще и для сохранения изоляции трубы.
Важным фактором по снижению энергозатрат на транспорт газа является своевременная и эффективная очистка внутренней полости трубопровода от разного вида загрязнений. Внутреннее состояние трубопровода довольно сильно влияет на изменение энергетических затрат, связанных с преодолением сил гидравлического сопротивления во внутренней полости трубопровода. Создание высокоэффективных очистных устройств с большим моторесурсом позволяет стабильно поддерживать производительность газопровода на проектном уровне, снижать энергозатраты на транспорт газа примерно на 10-15%.
Для уменьшения затрат мощности КС на перекачку газа, увеличения пропускной способности газопровода и экономии энергоресурсов на перекачку газа всегда выгодно поддерживать максимальное давление газа в трубопроводе, снижать температуру перекачиваемого газа за счет его охлаждения на станциях, использовать газопроводы большего диаметра, периодически осуществлять очистку внутренней полости трубопровода.