
- •«Электрооборудование в нефтяной и газовой промышленности»
- •Пермь2014 Содержание
- •Введение
- •Электрооборудование трансформаторных подстанции и распределительных устройств напряжением выше 1000 в.
- •Взрывобезопасное электрооборудование.
- •Введение
- •Источники электроэнергии и особенности её распределения на предприятиях нефтяной и газовой промышленности
- •Источники энергии, требования к системам электроснабжения и электрооборудованию
- •2.2 Структурное построение систем электроснабжения
- •2.3 Главные понижающие подстанции (гпп) с глубоким вводом
- •35... 220 КВ с двумя трансформаторами мощностью до 16 мв·а
- •2.4 Внешнее электроснабжение
- •2.5 Внутреннее электроснабжение
- •2.6 Категории потребителей
- •2.7 Основные принципы расчета нагрузок приемников электроэнергии
- •2.8 Типовые схемы распределения электроэнергии: радиальные, магистральные, смешанные.
- •2.9 Воздушные проводные и кабельные линии электропередач, их устройство и условия прокладки
- •2.10 Особенности сетей с изолированной нейтралью
- •Занулением оборудования
- •2.11 Токи короткого замыкания и их действия на элементы системы электроснабжения
- •Электродинамическое действие токов кз
- •Термическое действие токов кз
- •2.12 Ограничение токов короткого замыкания и регулирования напряжения
- •2.13 Распределение электроэнергии на буровых установках
- •Электрооборудование трансформаторных подстанций и распределительных устройств напряжением выше 1000 в
- •3.1 Классификация подстанций
- •3.2 Силовые трансформаторы
- •3.3 Выбор типа и мощности трансформаторов
- •3.4 Коммутационно-защитное оборудование
- •3.5 Измерительные трансформаторы и их назначение
- •Трансформаторы тока
- •Трансформаторы напряжения
- •3.6 Выключатели: масляные, воздушные, вакуумные, элегазовые
- •3.7 Разъеденители
- •3.8 Отделители
- •3.9 Короткозамыкатели
- •3.10 Разрядники
- •3.11 Реакторы
- •3.12 Системы автоматического повторного включения (апв) и автоматического включения резерва (авр)
- •3.13 Защита подстанций от перенапряжений
- •4. Электропривод
- •4.1 Общие сведения о системах электроприводов
- •4.2 Уравнение движения электропривода
- •4.3 Механические характеристики производственных механизмов и электродвигателей
- •5. Выбор электрических двигателей.
- •5.1 Общие принципы выбора электропривода.
- •5.2 Режимы работы электроприводов и нагрузочные диаграммы.
- •Кривые нагрева двигателя при продолжительном (а), кратковременном (б) и повторно-кратковременном (в) режимах работы
- •5.3 Выбор мощности электродвигателей при различных режимах работы.
- •6. Аппаратура и схемы управления электроприводами.
- •6.1 Общие принципы построения схем управления
- •6.2 Аппаратура управления и защиты (блок комплексных защит (бкз))
- •6.3 Программное управление электроприводами
- •7. Взрывобезопасное электрооборудование.
- •7.1 Уровни и виды взрывозащит электрооборудования.
- •7.2 Виды исполнений и область применения
- •7.2.1 Электрооборудование с взрывонепроницаемой оболочкой
- •Реннего воздуха; 5 — вентилятор внутреннего воздуха; 6 — ротор; 7 — вентилятор обдува наружным воздухом; 8 — лапы; 9 — обмотка статора; 10 — подшипниковый щит; 11 — подшипниковый узел
- •7.2.2 Электрооборудование повышенной надежности против взрыва
- •7.2.3Электрооборудование, продуваемое под избыточным давлением
- •7.2.4 Маслонаполненное электрооборудование
- •7.2.5 Электрооборудование искробезопасное, с кварцевым заполнением и специального исполнения
- •7.3 Особенности построения систем электроснабжения на предприятияхс повышенной взрывоопасностью
- •8. Электрооборудование буровых установок.
- •8.1 Электропривод долота Электропривод ротора
- •Подчиненного управления
- •Электробур
- •8.2 Автоматические регуляторы подачи долота
- •8.3 Электропривод буровой лебёдки
- •8.4 Электропривод буровых насосов
- •8.5 Дизель-электрический привод
- •8.6 Электрооборудование вспомогательных механизмов
- •Литература
2.11 Токи короткого замыкания и их действия на элементы системы электроснабжения
Коротким замыканием называется непосредственное соединение между любыми точками, разных фаз, фазы и нулевого провода и нулевого провода или фазы с землей, не предусмотренное нормальными условиями работы установки. Ниже перечислены основные виды коротких замыканий в электрических системах.
1. Трехфазное КЗ, при котором все три фазы замыкаются между собой в одной точке (рис. 2.13, а). Точка трехфазного КЗ обозначается K(3) . Токи, напряжения, мощности и другие величины, относящиеся к трехфазному КЗ, обозначаются I (3),U(3), S(3) и т.д.
2. Двухфазное КЗ, при котором происходит замыкание двух фаз между собой (рис. 2.13, б). Точка двухфазного КЗ обозначается K (2).
Рис. 2.13. Виды коротких замыканий
Токи, напряжения, мощности и другие величины, относящиеся к двухфазному КЗ, обозначаются I (2) ,U(2) , S (2) и т.д.
3. Двухфазное КЗ на землю (рис. 2.13, в), при котором замыкании двух фаз между собой сопровождается замыканием точки повреждения на землю (в системах с заземленными нейтралями). Точкой двухфазного КЗ на землю обозначается K (1.1) . Токи, напряжения, мощности и другие величины, относящиеся к двухфазному КЗ на землю, обозначаются I (1.1),U(1.1), S(1.1) и т.д.
4. Однофазное КЗ, при котором происходит замыкание одной из фаз на нулевой провод или на землю (рис. 2.13, г). Точка однофазного КЗ обозначается K (1) . Токи, напряжения, мощности и другие величины, относящиеся к однофазному КЗ, обозначаются I (1) ,U (1) , S (1) и т.д.
Встречаются и другие виды КЗ, связанных с обрывом проводов и одновременными замыканиями проводов различных фаз. Различают КЗ на зажимах генераторов (точки К(3) 1 и К(2) 1 ) и КЗ в сети, отделенные от генератора сопротивлениями сети (точки К(3) 2 и К(2) 2 ). Трехфазное КЗ является симметричным, поскольку при нем все три фазы оказываются в одинаковых условиях. Все остальные виды КЗ являются несимметричными, поскольку фазы не остаются в одинаковых условиях, а системы токов и напряжений получаются искаженными.
Наиболее часто встречаются однофазные замыкания. На их долю приходится до 65% от общего числа КЗ. Трехфазные КЗ возникают сравнительно редко - в 5% от общего числа КЗ.
Электродинамическое действие токов кз
В современных мощных электрических установках ударные токи КЗ достигают очень больших значений. Возникающие при этом механические усилия между отдельными токоведущими частями машин, аппаратов и элементов распределительных устройств способны вызвать значительные повреждения.
Поэтому для надежной работы электрической установки все ее элементы должны обладать достаточной динамической устойчивостью против этих максимальных механических усилий при возникновении ударного тока.
Термическое действие токов кз
Ток КЗ, протекая по отдельным элементам установки, вызывает дополнительный нагрев и тем самым повышение их температуры. Поскольку протекание тока КЗ обычно происходит в течение малого промежутка времени (не более нескольких секунд), то для различных токоведущих частей и элементов допускаются некоторые повышения температур сверх тех, которые устанавливаются для рабочего режима.
Естественно, что повышения температуры при КЗ не должны выходить за определенные пределы, так как в противном случае может быть нарушена изоляция и повреждены токоведущие части.