
- •1. Предмет и задачи химии. Место химии среди естественных наук. Экологические проблемы, роль химии в охране окружающей среды.
- •2. Закон сохранения материи и движения. Взаимосвязь массы и энергии.
- •3. Развитие материалистических представлений в химии. Атом. Молекула.
- •4. Относительные атомные и молекулярные массы. Моль – мера количества вещества.
- •5. Основные положения атомно-молекулярного учения. Вещества с молекулярной и немолекулярной структурой.
- •6. Закон постоянства состава. Дальтониды и бертоллиды.
- •7. Закон Авогадро и его следствия.
- •8. Состав атомов. Ядро и электроны.
- •9. Предпосылки возникновения квантовомеханической теории строения атома: уравнение Планка, постулаты Бора, уравнение Луи де Бройля.
- •10. Принцип неопределенности.
- •11. Вероятностная модель атома. Электронная орбиталь.
- •12. Главное квантовое число. Физический смысл и принимаемые значения. Энергетические уровни электрона.
- •14. Магнитное квантовое число. Физический смысл и принимаемые значения. Форма и ориентация орбиталей.
- •15. Спин и спиновое квантовое число.
- •16. Принцип Паули. Максимальная емкость орбиталей, подуровней и энергетических уровней.
- •17. Электронные структуры атомов элементов I-III периодов. Правило Хунда.
- •18. Электронные структуры элементов IV периода.
- •19. Периодический закон. Современная формулировка.
- •20. Периодическая система элементов.
- •21. Характеристика элемента по положению в периодической системе.
- •22. Физический смысл периодического закона.
- •23. Периодичность изменения свойств элементов и их соединений: эффективный радиус, потенциал ионизации, сродство к электрону.
- •24. Электроотрицательность.
- •25. Химическая связь, ее параметры. Энергия, длина связи, валентный угол.
- •26. Квантовомеханические методы трактовки ковалентной связи. Метод валентных связей.
- •27. Механизмы образования связи: обменный и донорно-акцепторный.
- •28. Кратность ковалентной связи …
- •29. Полярная и не полярная связь. Параметры полярной связи, дипольный момент, заряд полюса, длина …
- •30. Поляризуемость, поляризующее действие.
- •31. Насыщаемость ковалентной связи. Валентность.
- •32. Направленность химических связей. Теория гибридизации электронных орбиталей.
- •33. Типы гибридизации.
- •34. Геометрия молекул не органических соединений как следствие направленности химической связи.
- •35. Ионная связь как предельный случай ковалентной связи.
- •36. Механизм образования ионной связи.
- •37. Свойства ионной связи: ненаправленность и ненасыщаемость.
- •38. Свойства соединения с ковалентной и ионной связями.
- •39. Металлическая связь.
- •40. Межмолекулярные взаимодействия: ориентационное, индукционное и дисперсионное.
- •41. Водородная связь.
- •42. Агрегатное состояние вещества.
- •43. Типы кристаллических решеток.
- •44. Предмет химической термодинамики. Понятия: термодинамические системы, фаза, фазовый переход, термодинамические функции, стандартные условия.
- •45. Внутренняя энергия. Энтальпия.
- •46. Первый закон термодинамики.
- •47. Термохимия. Экзо- и эндотермические реакции.
- •49. Термохимические уравнения.
- •50. Стандартные энтальпии образования.
- •51. Закон Гесса и его следствия. Примеры термохимических расчетов.
- •52. Энтропия как мера неупорядоченности системы.
- •53. Уравнение Больцмана. Стандартная энтропия образования.
- •54. Второй закон термодинамики. Свободная энергия Гиббса. Направление химического процесса.
- •55. Стандартная свободная энергия образования.
- •56. Энтальпийный и энтропийный фактор.
- •57. Влияние температуры на направление реакции.
- •58. Скорость химических реакций. Факторы, влияющие на скорость химических реакций.
- •59. Закон действующих масс. Правило Вант-Гоффа.
- •60. Энергия активации. Теория активированного комплекса.
- •61. Катализ и катализаторы. Механизм катализа.
- •62. Химическое равновесие. Константа химического равновесия.
- •63. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •64. Растворы. Химическая теория растворов. Кристаллогидраты. Способы выражения концентрации растворенного вещества.
- •65. Растворимость веществ. Коэффициент растворимости. Факторы влияющие на растворимость.
- •66. Растворы неэлектролитов. Законы Рауля. Эбулиоскопия и криоскопия.
- •67. Осмотическое давление. Закон Вант-Гоффа. Осмос в природе. Почвенный раствор, подземные и грунтовые воды.
- •68. Растворы электролитов. Сильные и слабые электролиты.
- •69. Степень и константа электролитической диссоциации.
- •70. Факторы влияющие на степень диссоциации. Закон разбавления Оствальда.
- •71. Ионное произведение воды. Водородный показатель. Методы измерения pH.
- •72. Классы неорганических соединений: классификация, номенклатура, химические свойства и способы получения оксидов, оснований, кислот и солей.
- •73. Свойства кислот, солей и оснований в свете теории электролитической диссоциации.
- •74. Гидролиз солей. Константа и степень гидролиза. Факторы влияющие на степень гидролиза. Практическое значение гидролиза.
- •75. Ионные уравнения гидролиза.
- •76. Буферные растворы. Кислотность почв.
- •77. Равновесие раствора, осадок. Произведение растворимости.
- •78. Дисперсные системы, их классификация.
- •79. Коллоидные растворы: строение мицеллы, свойства, устойчивость коллоидов.
- •80. Классификация коллоидных систем. Коллоидные растворы в природе. Аэрозоли, дымы, туманы. Образование дельт в устье рек.
- •81. Классификация окислительно-восстановительных реакций. Важнейшие окислители и восстановители.
- •82. Окислительно-восстановительный потенциал. Направление окислительно-восстановительного процесса.
- •83. Ряд стандартных электродных потенциалов.
- •84. Электролиз растворов и расплавов.
- •85. Распространенность элементов в земной коре. Правило Оддо-Гаркинса, закон Ферсмана.
- •86. Геохимическая классификация элементов Гольдшмидта. Распространенность химических соединений в земной коре.
- •87. Радиоактивность, радиоактивные элементы. Типы радиоактивного распада. Ряды радиоактивности.
- •89. Круговорот элементов в биосфере.
- •90. Водород, положение в периодической системе, физические и химические свойства. Получение водорода, использование водорода как экологически чистого топлива и сырья для химической промышленности.
- •91. Вода: химические и физические свойства. Роль воды в природе. Проблемы опреснения и очистки воды. Охрана водоемов от загрязнения. Геологическая деятельность льда.
- •92. Общая характеристика элементов подгруппы VII a периодической системы. Хлор: химические и физические свойства, получение.
- •93. Хлористый водород, соляная кислота и ее соли.
- •94. Общая характеристика элементов подгруппы VI a периодической системы. Кислород: положение в периодической системе, химические и физические свойства, получение и применение.
- •95. Сера: химические и физические свойства. Соединения серы с водородом и кислородом.
- •96. Химические реакции, лежащие в основе производства серной кислоты контактным способом и закономерности их протекания.
- •97. Общая характеристика элементов подгруппы V a. Азот: химические и физические свойства. Азот в природе.
- •Физические свойства
- •98. Аммоний: промышленный синтез, химические свойства. Соли аммония.
- •99. Оксиды азота (II) и (IV) в производстве азотной кислоты. Химические особенности азотной кислоты. Нитраты. Азотные удобрения.
- •100. Фосфор: аллотропные модификации, химические и физические свойства.
- •101. Оксид фосфора (V), ортофосфорная кислота и ее соли. Фосфорные удобрения.
65. Растворимость веществ. Коэффициент растворимости. Факторы влияющие на растворимость.
Растворимость — способность вещества образовывать с другими веществами однородные системы — растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц. Растворимость выражается концентрацией растворённого вещества в его насыщенном либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя (г/100 г или см³/100 см³). Растворимость газов в жидкости зависит от температуры и давления. Растворимость жидких и твёрдых веществ — практически только от температуры
Коэффициент растворимости вещества s - максимальная масса вещества, способная раствориться в 100 г воды при данной температуре с образованием насыщенного раствора. Растворимостью также называют молярную концентрацию вещества в его насыщенном растворе.
Факторы, влияющие на растворимость веществ в жидком состоянии. 1) Природа смешиваемых веществ. В веществах с полярными молекулами (особенно с водородными связями) и в ионных веществах существует сильное взаимное притяжение частиц. Поэтому такие вещества не будут легко дробиться (смешиваться с другими), если в растворе не будет сильного притяжения между частицами разных веществ. Вещества с ионной связью или с полярными молекулами должны гораздо лучше растворяться в полярных или ионных растворителях, чем в растворителях с неполярными молекулами. Соответственно, вещества с неполярными молекулами лучше растворяются в неполярных растворителях и хуже - в полярных, а металлы - в металлах. 2) Температура. Здесь, как и в любых других равновесиях, действует принцип Ле Шателье. При нагревании растворимость возрастает, если D раств. H > 0 (и тем круче, чем больше DH), и убывает, если D раств. H < 0. Для твердых веществ более характерно первое, а для газов - второе, хотя бывает и наоборот. Это особенно наглядно в случае солей, образующих кристаллогидраты. При растворении кристаллогидрата в воде не может быть сильной гидратации, поскольку вещество уже гидратировано. Поэтому преобладает первое слагаемое, и DраствH > 0. Если мы берем ту же соль в безводном виде, но знаем, что она способна давать кристаллогидрат, то можно ожидать, что у нее преобладает второе слагаемое, и DраствH < 0. Поэтому графики зависимости растворимости от температуры у кристаллогидрата и безводной соли часто имеют противоположный наклон. 3) Давление. Давление влияет в основном на процессы с участием газов. Зависимость растворимости газов от давления видел всякий, кто открывал бутылку лимонада, пива или шампанского. Внутри бутылки повышенное давление, и углекислый газ находится в растворе. При открывании давление падает, газ смешивается с воздухом, и парциальное давление CO2 падает еще сильнее. Раствор становится пересыщенным, и из него выделяются пузырьки газа. 4) Присутствие третьего вещества. Его влияние может быть разнообразно. а) это вещество сильно сольватируется, связывает много молекул растворителя и этим уменьшает растворимость; пример: спирт по отношению к растворам солей; б) это вещество связывает молекулы или ионы растворяемого вещества и этим повышает растворимость; пример: аммиак, связывающий ионы меди и повышающий растворимость Cu(OH)2; в) это вещество дает ионы, одноименные с ионами растворяемого вещества, и тем смещает равновесие растворения влево; пример: в насыщенном растворе CaSO4 существует равновесие CaSO4 (тв) = Ca2+(р-р) + SO42- (р-р) . Добавляя крепкий раствор хлорида кальция, мы увеличиваем концентрацию ионов кальция, и часть сульфата выпадает.