
- •1. Предмет и задачи химии. Место химии среди естественных наук. Экологические проблемы, роль химии в охране окружающей среды.
- •2. Закон сохранения материи и движения. Взаимосвязь массы и энергии.
- •3. Развитие материалистических представлений в химии. Атом. Молекула.
- •4. Относительные атомные и молекулярные массы. Моль – мера количества вещества.
- •5. Основные положения атомно-молекулярного учения. Вещества с молекулярной и немолекулярной структурой.
- •6. Закон постоянства состава. Дальтониды и бертоллиды.
- •7. Закон Авогадро и его следствия.
- •8. Состав атомов. Ядро и электроны.
- •9. Предпосылки возникновения квантовомеханической теории строения атома: уравнение Планка, постулаты Бора, уравнение Луи де Бройля.
- •10. Принцип неопределенности.
- •11. Вероятностная модель атома. Электронная орбиталь.
- •12. Главное квантовое число. Физический смысл и принимаемые значения. Энергетические уровни электрона.
- •14. Магнитное квантовое число. Физический смысл и принимаемые значения. Форма и ориентация орбиталей.
- •15. Спин и спиновое квантовое число.
- •16. Принцип Паули. Максимальная емкость орбиталей, подуровней и энергетических уровней.
- •17. Электронные структуры атомов элементов I-III периодов. Правило Хунда.
- •18. Электронные структуры элементов IV периода.
- •19. Периодический закон. Современная формулировка.
- •20. Периодическая система элементов.
- •21. Характеристика элемента по положению в периодической системе.
- •22. Физический смысл периодического закона.
- •23. Периодичность изменения свойств элементов и их соединений: эффективный радиус, потенциал ионизации, сродство к электрону.
- •24. Электроотрицательность.
- •25. Химическая связь, ее параметры. Энергия, длина связи, валентный угол.
- •26. Квантовомеханические методы трактовки ковалентной связи. Метод валентных связей.
- •27. Механизмы образования связи: обменный и донорно-акцепторный.
- •28. Кратность ковалентной связи …
- •29. Полярная и не полярная связь. Параметры полярной связи, дипольный момент, заряд полюса, длина …
- •30. Поляризуемость, поляризующее действие.
- •31. Насыщаемость ковалентной связи. Валентность.
- •32. Направленность химических связей. Теория гибридизации электронных орбиталей.
- •33. Типы гибридизации.
- •34. Геометрия молекул не органических соединений как следствие направленности химической связи.
- •35. Ионная связь как предельный случай ковалентной связи.
- •36. Механизм образования ионной связи.
- •37. Свойства ионной связи: ненаправленность и ненасыщаемость.
- •38. Свойства соединения с ковалентной и ионной связями.
- •39. Металлическая связь.
- •40. Межмолекулярные взаимодействия: ориентационное, индукционное и дисперсионное.
- •41. Водородная связь.
- •42. Агрегатное состояние вещества.
- •43. Типы кристаллических решеток.
- •44. Предмет химической термодинамики. Понятия: термодинамические системы, фаза, фазовый переход, термодинамические функции, стандартные условия.
- •45. Внутренняя энергия. Энтальпия.
- •46. Первый закон термодинамики.
- •47. Термохимия. Экзо- и эндотермические реакции.
- •49. Термохимические уравнения.
- •50. Стандартные энтальпии образования.
- •51. Закон Гесса и его следствия. Примеры термохимических расчетов.
- •52. Энтропия как мера неупорядоченности системы.
- •53. Уравнение Больцмана. Стандартная энтропия образования.
- •54. Второй закон термодинамики. Свободная энергия Гиббса. Направление химического процесса.
- •55. Стандартная свободная энергия образования.
- •56. Энтальпийный и энтропийный фактор.
- •57. Влияние температуры на направление реакции.
- •58. Скорость химических реакций. Факторы, влияющие на скорость химических реакций.
- •59. Закон действующих масс. Правило Вант-Гоффа.
- •60. Энергия активации. Теория активированного комплекса.
- •61. Катализ и катализаторы. Механизм катализа.
- •62. Химическое равновесие. Константа химического равновесия.
- •63. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- •64. Растворы. Химическая теория растворов. Кристаллогидраты. Способы выражения концентрации растворенного вещества.
- •65. Растворимость веществ. Коэффициент растворимости. Факторы влияющие на растворимость.
- •66. Растворы неэлектролитов. Законы Рауля. Эбулиоскопия и криоскопия.
- •67. Осмотическое давление. Закон Вант-Гоффа. Осмос в природе. Почвенный раствор, подземные и грунтовые воды.
- •68. Растворы электролитов. Сильные и слабые электролиты.
- •69. Степень и константа электролитической диссоциации.
- •70. Факторы влияющие на степень диссоциации. Закон разбавления Оствальда.
- •71. Ионное произведение воды. Водородный показатель. Методы измерения pH.
- •72. Классы неорганических соединений: классификация, номенклатура, химические свойства и способы получения оксидов, оснований, кислот и солей.
- •73. Свойства кислот, солей и оснований в свете теории электролитической диссоциации.
- •74. Гидролиз солей. Константа и степень гидролиза. Факторы влияющие на степень гидролиза. Практическое значение гидролиза.
- •75. Ионные уравнения гидролиза.
- •76. Буферные растворы. Кислотность почв.
- •77. Равновесие раствора, осадок. Произведение растворимости.
- •78. Дисперсные системы, их классификация.
- •79. Коллоидные растворы: строение мицеллы, свойства, устойчивость коллоидов.
- •80. Классификация коллоидных систем. Коллоидные растворы в природе. Аэрозоли, дымы, туманы. Образование дельт в устье рек.
- •81. Классификация окислительно-восстановительных реакций. Важнейшие окислители и восстановители.
- •82. Окислительно-восстановительный потенциал. Направление окислительно-восстановительного процесса.
- •83. Ряд стандартных электродных потенциалов.
- •84. Электролиз растворов и расплавов.
- •85. Распространенность элементов в земной коре. Правило Оддо-Гаркинса, закон Ферсмана.
- •86. Геохимическая классификация элементов Гольдшмидта. Распространенность химических соединений в земной коре.
- •87. Радиоактивность, радиоактивные элементы. Типы радиоактивного распада. Ряды радиоактивности.
- •89. Круговорот элементов в биосфере.
- •90. Водород, положение в периодической системе, физические и химические свойства. Получение водорода, использование водорода как экологически чистого топлива и сырья для химической промышленности.
- •91. Вода: химические и физические свойства. Роль воды в природе. Проблемы опреснения и очистки воды. Охрана водоемов от загрязнения. Геологическая деятельность льда.
- •92. Общая характеристика элементов подгруппы VII a периодической системы. Хлор: химические и физические свойства, получение.
- •93. Хлористый водород, соляная кислота и ее соли.
- •94. Общая характеристика элементов подгруппы VI a периодической системы. Кислород: положение в периодической системе, химические и физические свойства, получение и применение.
- •95. Сера: химические и физические свойства. Соединения серы с водородом и кислородом.
- •96. Химические реакции, лежащие в основе производства серной кислоты контактным способом и закономерности их протекания.
- •97. Общая характеристика элементов подгруппы V a. Азот: химические и физические свойства. Азот в природе.
- •Физические свойства
- •98. Аммоний: промышленный синтез, химические свойства. Соли аммония.
- •99. Оксиды азота (II) и (IV) в производстве азотной кислоты. Химические особенности азотной кислоты. Нитраты. Азотные удобрения.
- •100. Фосфор: аллотропные модификации, химические и физические свойства.
- •101. Оксид фосфора (V), ортофосфорная кислота и ее соли. Фосфорные удобрения.
61. Катализ и катализаторы. Механизм катализа.
Катализ — избирательное ускорение одного из возможных термодинамически разрешенных направлений химической реакции под действием катализатора(ов), который многократно вступает в промежуточное химическое взаимодействие с участниками реакции и восстанавливает свой химический состав после каждого цикла промежуточных химических взаимодействий.
Катализатор — химическое вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции.
Катализатор изменяет механизм реакции на энергетически более выгодный, то есть снижает энергию активации. Катализатор образует с молекулой одного из реагентов промежуточное соединение, в котором ослаблены химические связи. Это облегчает его реакцию со вторым реагентом. Важно отметить, что катализаторы ускоряют обратимые реакции, как в прямом, так и в обратном направлениях.
62. Химическое равновесие. Константа химического равновесия.
Химическое равновесие — состояние химической системы, в которой протекает одна или несколько химических реакций, причём скорости в каждой паре прямой-обратной реакции равны между собой. Для системы, находящейся в химическом равновесии, концентрации реагентов, температура и другие параметры системы не изменяются со временем.
А2 + В2 ⇄ 2AB
Константа равновесия — величина, определяющая для данной химической реакции соотношение между термодинамическими активностями (либо, в зависимости от условий протекания реакции, парциальными давлениями, концентрациями или фугитивностями) исходных веществ и продуктов в состоянии химического равновесия (в соответствии с законом действующих масс). Зная константу равновесия реакции, можно рассчитать равновесный состав реагирующей смеси, предельный выход продуктов, определить направление протекания реакции.
63. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
Принцип Ле Шателье — Брауна (1884 г.) — если на систему, находящуюся в устойчивом равновесии, воздействовать извне, изменяя какое-либо из условий равновесия (температура, давление, концентрация, внешнее электромагнитное поле), то в системе усиливаются процессы, направленные на компенсацию внешнего воздействия.
64. Растворы. Химическая теория растворов. Кристаллогидраты. Способы выражения концентрации растворенного вещества.
Раствор — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия. "Гомогенный" - значит, каждый из компонентов распределён в массе другого в виде своих частиц, то есть атомов, молекул или ионов.
Химическая теория растворов
Процесс образования растворов самопроизволен. Всякое чистое вещество самопроизвольно загрязняется за счет поглощения посторонних веществ. Одна из причин процесса растворения - химическое взаимодействие частиц растворенного вещества с молекулами растворителя с образованием сольватов (или гидратов, если растворителем является вода). Также причиной самопроизвольности процессов растворения является увеличение степени беспорядка системы (энтропии) при переходе от чистых веществ к раствору. Гидратная вода настолько прочно связана с растворенным веществом, что при выделении его из раствора входит в состав кристаллов, образуя кристаллогидраты, а входящая в их состав вода называется кристаллизационной. Сольваты обычно менее прочны, чем большинство химических соединений. Однако когда тепловой эффект сольватации превышает теплоту разрушения кристаллической решетки растворяемого вещества, растворение сопровождается выделением теплоты. Прочность сольватов определяется силами взаимодействия между растворителем и растворенным веществом. Сольваты образуются за счет ион-дипольного, диполь-дипольного и донорно-акцепторного взаимодействия, а также за счет образования водородных связей. Д. И. Менделеев разработал химическую теорию растворов, в основе которой лежат представление об определяющей роли сольватации при растворении веществ. Растворение многих веществ сопровождается не выделением, а поглощением теплоты. Это значит, что на разрушение кристаллической решетки затрачивается больше энергии, чем выделяется при сольватации. Тепловой эффект процесса растворения - это сумма теплоты, необходимой для разрушения кристаллической решетки вещества и теплоты, выделяющейся в процессе сольватации. Вещества, находящиеся в чистом состоянии, самопроизвольно стремятся перейти в раствор. Исследования свойств растворов, предпринятые на рубеже XIX - XX вв. привели к созданию так называемой физической теории растворов, построенной на аналогии между растворами и смесями газов. При этом предполагалось, что молекулы растворенного вещества и растворителя в известной мере индифферентны (безразличны) по отношению друг к другу. Физическая теория растворов является противоположностью химической теории Д. И. Meнделеева. Однако, хотя физическая теория хорошо описывала поведение растворов неэлектролитов - веществ, растворы которых не проводят электрический ток, все попытки применения найденных закономерностей по отношению к растворам электролитов - веществ, растворы которых проводят электрический ток, были безуспешными. В настоящее время выяснилось, что обе теории были в равной степени правы и сейчас процесс растворения рассматривается как физико-химический процесс, а растворы - как физико-химические системы.
Кристаллогидраты — кристаллы, содержащие молекулы воды и образующиеся, если в кристаллической решётке катионы образуют более прочную связь с молекулами воды, чем связь между катионами и анионами в кристалле безводной соли. При низких температурах вода в кристаллогидратах может быть связана как с катионами, так и с анионами солей. Многие соли, а также кислоты и основания выпадают из водных растворов в виде кристаллогидратов.
-
Обозначение
Название и определение
m
Молярная весовая концентрация (моляльность) - число молей растворённого вещества, приходящееся на 1000g растворителя.
CM
Молярная объёмная концентрация (молярность) - число молей растворённого вещества, содержащееся в 1 литре раствора.
CN
Нормальность - число грамм-эквивалентов растворённого вещества, содержащееся в 1 литре раствора.
N
Мольная (или молярная) доля - число молей растворённого вещества, приходящееся на 1 моль раствора.
T
Титр - число граммов растворённого вещества, содержащееся в 1ml раствора.
P
Весовой процент - число граммов растворённого вещества, содержащееся в 100g раствора.
A
Число граммов растворённого вещества, приходящееся на 100g растворителя.