Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kompyuternoe_modelirovanie_Somov_Vosstanovlen.doc
Скачиваний:
4
Добавлен:
01.05.2025
Размер:
10.75 Mб
Скачать

18. Методика решения задачи в случае трехмерной, трехфазной фильтрации (sip-метод)

(3.1.3)

где

а индекс "1" относится к газовой фазе, индекс "2" - к нефтяной, индекс "3" - к водяной фазе.

Поскольку система (3.1.3) является существенно нелинейной, воз­можно получение ее решения только на основе численных методов ин­тегрирования дифференциальных уравнений в частных производных. Ме­тоды численного решения подобных систем могут быть различными. В настоящей работе используется метод неполной разностной факториза­ции [14, 29, 42] .

Сущность метода заключается в следующем. Семи диагональная мат­рица системы разностных /алгебраических/ уравнений /рис.3.1а/, к которой сводится дифференциальная задача (3.1.3), при соответствующих условиях, представляется в виде произведения двух матриц - верхней /рис. 3.1в/ и нижней /рис. 3.1б/ треугольных матриц. Обычное разло­жение /факторизация/ матрицы на верхнюю и нижнюю тре­угольные матрицы приводит к появлению ненулевых членов в области между диагоналями Z и E для нижней матрицы и в области между диагоналями S и E для верхней матрицы. При значительном чис­ле узлов разностной сетки решение такой факторизованной /т.е. разло­женной на множители/ системы требует большой памяти для хранения ненулевых членов матриц и значительных затрат машинного времени на решение.

Однако матрицу можно модифицировать путем добавления некоторой вспомогательной матрицы таким образом, чтобы ненулевые члены сохранялись только на диагоналях, представленных на рис. 3.1г. Модифицированная матрица ( ) легко факторизуется /разлагается/ на произведение матриц

Систему разностных уравнений /аппроксимирующую систему дифферен­циальных уравнений и граничных условий/ можно записать следующим образом:

(3.1.4)

Согласно идее рассматриваемого метода решения добавим справа и слева в (3.1.4) вспомогательную матрицу. /Следует отметить, что мо­жет быть несколько методов для определения матрицы . Мы восполь­зуемся методом, предложенным Стоуном [42] /. Тогда будем иметь

(3.1. 4а)

где матрица ( ) легко разлагается.

Система (3.1.4а) решается, если величины в правой части известны. Для этого применим следующую итерационную схему:

, где m – номер итерации.

Ряд исследователей указывает, что для улучшения сходимости решения удобней решать задачу не относительно итерируемой величины

а относительно вектора невязки /приращений/:

(3.1.4б)

Добавим и вычтем из правой части (3.1.4а) величину

Тогда

или окончательно

, (3.1.4в)

где ; - матрица коэффициентов разностных уравнений;

- вспомогательная матрица; - искомая функция /вектор/; - правая часть разностных уравнений /вектор/.

Здесь ;

и далее

= ; =

- фазовое давление / давление в фазе/ в точке (i,j,k) разностной сетки; - правая часть уравнения (3.1.4) в точке (i,j.k) разностной сетки, соответствующая определенному компоненту сме­си / m = 1,2,3/.

Модифицированная матрица / / должна по условию легко факторизоваться на верхнюю и нижнюю треугольные матрицы, т.е.

( ) = ( а )

где - нижняя, a - верхняя треугольные матрицы.

Из (3.1.4в) и (а) следует, что

( )* = * = (б)

Обозначим (в)

тогда из (б) следует

(г)

Решение системы (3.1.4в) может быть получено следующим образом. Так как и треугольные матрицы, то сначала из /г/ определяем вектор

( д)

а затем из (в) определяем вектор приращений искомых дав­лений на (m+1) итерации

(е)

Элемент матрицы в уравнении (3.1.4в) для некоторой точки (i,j,k) пространственной сетки имеет вид:

(3.1.5)

В (3.1.5) последние 6 строк выражают вспомогательную матрицу ; - диагональная матрица итерационных параметров, (p= 1,2,3);

- вектор невязки по давлениям в фазах в точке (i,j,k);

;

и т.д. - матрицы 3-го порядка в случае трехфазной фильтрации.

Выражение (3.1.5) имеет место при решении разностных уравнений с возрастанием всех индексов. Вообще говоря, для улучшения сходи­мости итерационного процесса при решении разностных уравнений в методе неполной разностной факторизации рекомендуется менять поря­док изменения индексов от итераций к итерации. Например, можно ме­нять индексы при нечетной итерации так: i= 1,2,...,М; j= 1,2,…N; k=1,2,…Kz; а при четной i=1,2,...М; j= N,N-1,…2,1; k= Kz, Kz-1,…2,1.

На рис.3.2 представлена мнемоническая схема для решения систе­мы (3.1.4в) при возрастании всех индексов /черные и светлые кружочки/ и при изменении индексов j и k в обратном порядке /черные кру­жочки и крестики/.

Как было показано выше, процесс решения методом неполной разност­ной факторизации распадается на два этапа. На первом определяются матрица и вектор , на втором решается система (е), чтобы определить вектор невязки .

Рис. 3.2

3.1.4

Рис. 3.2 Мнемоническая схема решения системы разностных уравнений (3.1.4в), а также схемы расположения коэффициентов разностных уравнений на плоскостях

X-Y, X-Z, Y-Z

- при возрастании индексов- черные и светлые кружочки;

- при изменении индексов j и k в обратном порядке- черные кружочки и крестики.

(3.1.6)

(i=1,2,…M; j=1,2,…N; k=1,2,…Kz)

Вектор при этом определяется по формуле:

(3.1.7)

(i=1,2,…M; j=1,2,…N; k=1,2,…Kz)

Значения получаются по рекуррентной формуле:

(3.1.8)

(i= M,…2,1; j= N,…2,1; k= Kz,…2,1)

При расчетах с изменением индексов: i=1,2,…M; j=N,N-1,…2,1; k=Kz,Kz-1,…2,1 выражения для коэффициентов имеют вид:

(3.1.6’)

( i=1,2,…M; j=N,N-1,…2,1; k=Kz,Kz-1,…2,1)

Вектор в этом случае определяется по формуле:

(3.1.7’)

( i=1,2,…M; j=N,N-1,…2,1; k=Kz,Kz-1,…2,1)

Значения получаются по формуле:

(3.1.8’)

(i= M,…2,1; j= 1,2,…N; k= 1,2,…Kz)

В выражениях (3.1.6, 3.1.6', 3.1.7, 3.1.7', 3.1.8, 3.1.8')

- матрица итерационных параметров;

- единичная матрица

Элементы матриц , и т.д. в /3.1.5/ имеют вид:

(3.1.9)

( m=1,2,3; =1,2,3)

Правая часть уравнения (3.1.4) для точки (i,j,k) разност­ной сетки - это вектор вида

и далее

(3.1.10)

Здесь ; - фазовое давление ( =1,2,3) на предыдущем временном слое; - размеры шагов пространственной и временной разностной сетки.

Для выбора величин итерационных параметров в матрице итерацион­ных параметров рекомендуется рядом исследователей /Уайнштейн и др. 1969 [262,272]/ оценить следующую величину:

где M, N, Kz- число узлов по осям X, Y, Z , соответ­ственно;

;

;

.

Лучшая сходимость итерационного процесса достигается при ис­пользовании последовательности итерационных параметров в цикле [45]. Для матрицы итерационных параметров величины могут быть определены следующим образом:

(3.1.11)

При этом итерационные параметры изменяются от итерации к итерации в геометрической прогрессии. Согласно (3.1.11) изменяется от до 0, затем цикл изменения итерационного параметра повторяется. При оценке , , величины, равные нулю или бесконечности не рассматриваются. В общем случае число параметров в цикле принимается с= 4 10. Если при определенной последовательности решения возникает расходимость результатов, вычисленное значение следует умножить на коэффициент, меняющийся от 2 до 10, если итерации сходятся, но медленно, то это значение нужно разделить на тот же коэффициент.