- •1.Представление дифференциальных уравнений параболического типа в разностной форме
- •Рассмотрим представление в конечно – разностной форме одномерного дифференциального уравнения параболического типа
- •2.Понятие устойчивости и сходимости разностных уравнений. Условие устойчивости явной и неявной разностной схемы.
- •4.Постановка задачи о притоке реального газа в круговом пласте к скважине. Уравнение, граничные и начальные условия.
- •7. Особенности постановки задач двумерной однофазной фильтрации.
- •9.Метод переменных направлений.
- •10. Локально-одномерная схема Самарского а.А.
- •11.Схематизация залежи в случае однофазной фильтрации. Способ задания реальных скважин на модели.
- •13.Правило фаз Гиббса. Сведение многокомпонентных смесей к системе бинарных и тройных смесей.
- •16.Примеры решения площадных и профильных задач двухфазной фильтрации.
- •17.Об активном воздействии на водонапорный режим при разработке газовых месторождений
- •18. Методика решения задачи в случае трехмерной, трехфазной фильтрации (sip-метод)
- •19. Особенности задания начальных и граничных условий в случае пространственных задач фильтрации
- •20.Задание начальных и граничных условий в двумерном случае.
- •21. Результаты решения трехмерных трехфазных задач фильтрации применительно к разным технологиям разработки.
- •22. Влияние отдельных факторов на характер поведения кривых давления и насыщенности при решении задач фильтрации трёхфазных смесей.
- •23. Результаты прогнозирования показателей разработки реальной залежи.
- •24. Моделирование залежи. Получение замыкающих соотношений для решения трехфазных задач. Моделирование залежи: схематизация, размещение скважин по площади.
- •Получение замыкающих соотношений для решения трехфазных задач. Изменение плотности газа рассчитывалось по уравнению состояния для реального газа
- •25. Выбор исходных геолого-промысловых параметров при моделировании залежи.
- •Оценка запасов газа, конденсата и нефти по третьему объекту
- •26. Оценка снижения коэффициентов нефтеотдачи оторочек подстилающего типа за счет опережающей разработки газовой части пласта.
- •27. Расчет начальных и граничных условий при моделировании реальной залежи.
- •28. Разработка математической модели.
- •29. Модельные исследования.
- •Часть 2!!!!!!!!!!!!!!
- •Понятие о моделировании.
- •2. Моделирование фильтрации на макро и микро уровне
- •3. Геологические и гидродинамические модели
- •4. Разномасштабные модели фильтрации.
- •5. Существующие лицензированные программные пакеты. Понятие программного продукта.
- •6. Структура типового программного пакета для реализации задач моделирования нефтегазовых месторождений.
- •7. Возможности пре- и пост - процессора лицензированных программ.
- •8. Программное обеспечение для построения геологической модели (Petrel)
- •9. Исходные данные для гидродинамического моделирования процессов разработки нефтегазовых месторождений
- •10. Схематизация пласта и выбор расчетной модели.
- •11. Выбор модели фильтрации.
- •12. Постоянно- действующие модели. Методы и цель создания.
- •13. Основные этапы создания гидродинамической модели месторождения.
- •Воспроизведение истории разработки. Основные методы.
- •Уравнение сохранения массы при многофазной многокомпонентной фильтрации.
- •Абсолютная проницаемость. Методы получения. Способ задания.
- •Относительные фазовые проницаемости при двухфазной фильтрации. Методы получения. Способ задания.
- •Относительные фазовые проницаемости при трехфазной фильтрации. Методы получения. Способ задания.
- •Модель трехфазной фильтрации (Black oil).
- •Свойства флюидов и породы, учитываемые в модели трехфазной фильтрации (Black oil). Характерный вид зависимости.
- •Пористость и емкостные свойства пласта. Источники информации. Способ задания.
- •22. Моделирование трещиновато-порового пласта.
- •23. Данные о насыщенности и капиллярном давлении. Источники информации и способ задания.
- •24. Факторы, влияющие на определение размеров расчетных блоков.
- •26. Переход от геологической модели к гидродинамической. Процедура масштабирования (upscaling).
22. Моделирование трещиновато-порового пласта.
Наиболее сложным строением характеризуются трещиновато-поровые пласты, имеющие несколько типов пустот, в которых содержатся и фильтруются флюиды. Собственно порода - обладает системой равномерно распределенных мелких перовых каналов, обусловленной кристаллической структурой слагающего ее материала. Кроме того, могут встретиться еще одна или несколько систем более крупных поровых каналов, образовавшихся в результате выщелачивания или растрескивания сходного материала. Вторичные поровые каналы, образовавшиеся вследствие выщелачивания, называются кавернами. Результатом растрескивания первичной породы являются трещины. Каверны и трещины резко отличаются по размеру и распределению по размеру от межзерновых пор и оказывают существенное влияние на пористость и проницаемость породы. В трещиноватых пластах фильтрация происходит в основном по системе трещин, тогда как большая часть флюида содержится в низкопроницаемой матрице. Вытеснение жидкостей из блоков матрицы в трещины происходит под действием капиллярных сил. Для математического моделирования трещиновато-поровых коллекторов используются специальные методы. В отдельных случаях при решении исследовательских задач, связанных с изучением взаимодействия отдельного низкопроницаемого блока и окружающих его трещин, применяется стальное моделирование с использованием измельчения разностной сетки и явным учетом в модели геометрии блоков и трещин. Однако при моделировании реальных пластов и решении практических задач такой подход не применим. Как правило, используются существенные допущения. Наиболее простой метод учета трещиноватого строения пласта связан с моделированием анизотропии проницаемости. В этом случае матрица и трещины рассматриваются как единая система, характеризующаяся суммарной пористостью. Анизотропия проницаемости позволяет учесть в модели эффективную проницаемость среды вдоль основного направления распространения трещин и перпендикулярно ему.
Общий подход основан на использовании концепции двойной среды, когда матрица и трещины представляются в виде вложенных континуумов, каждый из которых характеризуется своей проницаемостью и пористостью. С помощью специального закона учитывается масссобмен между средами. Среда, моделирующая трещины, обычно характеризуется очень высокой проводимостью, но имеет незначительный объем. Матрица, как правило, имеет существенно более высокую пористость и очень низкую проницаемость. Часто принимается, что фильтрация происходит только по системе трещин, объем которых пренебрежимо мал. При моделировании многофазной фильтрации в трещиновато-поровом пласте определяются насыщенности и давления фаз в каждой. Переток каждой фазы из одной среды в другую учитывается в уравнении сохранения массы в виде источника или стока. Интенсивность перетока определяется использованием дополнительных гипотез или результатов лабораторного или вычислительного эксперимента. Часто предполагается, что интенсивность перетока пропорциональна разности давлений в матрице и трещине, а коэффициент пропорциональности зависит от геометрии блоков и трещин, их абсолютных и относительных проницаемостей, по результатам детального математического моделирования сдельного блока и окружающих его трещин либо в ходе лабораторных экспериментов. Иногда в рамках концепции двойной среды используется приближенный подход, в соответствии с которым давление в матрице и в трещинах предполагается одинаковым. В этом случае при однофазной фильтрации система уравнений сохранения массы в матрице и в трещинах относительно давления и перетока является замкнутой. При многофазной фильтрации суммарный переток фаз вычисляется аналогично, но для замыкания системы уравнений требуются дополнительные соотношения для определения интенсивности массообмена отдельными фазами. Наиболее простой способ состоит в использовании гипотезы о том, что фазовый состав перетекающего флюида может быть определен «вверх по потоку». В более общем случае потоки отдельных фаз могут быть направлены в противоположных направлениях.
