
- •1.Представление дифференциальных уравнений параболического типа в разностной форме
- •Рассмотрим представление в конечно – разностной форме одномерного дифференциального уравнения параболического типа
- •2.Понятие устойчивости и сходимости разностных уравнений. Условие устойчивости явной и неявной разностной схемы.
- •4.Постановка задачи о притоке реального газа в круговом пласте к скважине. Уравнение, граничные и начальные условия.
- •7. Особенности постановки задач двумерной однофазной фильтрации.
- •9.Метод переменных направлений.
- •10. Локально-одномерная схема Самарского а.А.
- •11.Схематизация залежи в случае однофазной фильтрации. Способ задания реальных скважин на модели.
- •13.Правило фаз Гиббса. Сведение многокомпонентных смесей к системе бинарных и тройных смесей.
- •16.Примеры решения площадных и профильных задач двухфазной фильтрации.
- •17.Об активном воздействии на водонапорный режим при разработке газовых месторождений
- •18. Методика решения задачи в случае трехмерной, трехфазной фильтрации (sip-метод)
- •19. Особенности задания начальных и граничных условий в случае пространственных задач фильтрации
- •20.Задание начальных и граничных условий в двумерном случае.
- •21. Результаты решения трехмерных трехфазных задач фильтрации применительно к разным технологиям разработки.
- •22. Влияние отдельных факторов на характер поведения кривых давления и насыщенности при решении задач фильтрации трёхфазных смесей.
- •23. Результаты прогнозирования показателей разработки реальной залежи.
- •24. Моделирование залежи. Получение замыкающих соотношений для решения трехфазных задач. Моделирование залежи: схематизация, размещение скважин по площади.
- •Получение замыкающих соотношений для решения трехфазных задач. Изменение плотности газа рассчитывалось по уравнению состояния для реального газа
- •25. Выбор исходных геолого-промысловых параметров при моделировании залежи.
- •Оценка запасов газа, конденсата и нефти по третьему объекту
- •26. Оценка снижения коэффициентов нефтеотдачи оторочек подстилающего типа за счет опережающей разработки газовой части пласта.
- •27. Расчет начальных и граничных условий при моделировании реальной залежи.
- •28. Разработка математической модели.
- •29. Модельные исследования.
- •Часть 2!!!!!!!!!!!!!!
- •Понятие о моделировании.
- •2. Моделирование фильтрации на макро и микро уровне
- •3. Геологические и гидродинамические модели
- •4. Разномасштабные модели фильтрации.
- •5. Существующие лицензированные программные пакеты. Понятие программного продукта.
- •6. Структура типового программного пакета для реализации задач моделирования нефтегазовых месторождений.
- •7. Возможности пре- и пост - процессора лицензированных программ.
- •8. Программное обеспечение для построения геологической модели (Petrel)
- •9. Исходные данные для гидродинамического моделирования процессов разработки нефтегазовых месторождений
- •10. Схематизация пласта и выбор расчетной модели.
- •11. Выбор модели фильтрации.
- •12. Постоянно- действующие модели. Методы и цель создания.
- •13. Основные этапы создания гидродинамической модели месторождения.
- •Воспроизведение истории разработки. Основные методы.
- •Уравнение сохранения массы при многофазной многокомпонентной фильтрации.
- •Абсолютная проницаемость. Методы получения. Способ задания.
- •Относительные фазовые проницаемости при двухфазной фильтрации. Методы получения. Способ задания.
- •Относительные фазовые проницаемости при трехфазной фильтрации. Методы получения. Способ задания.
- •Модель трехфазной фильтрации (Black oil).
- •Свойства флюидов и породы, учитываемые в модели трехфазной фильтрации (Black oil). Характерный вид зависимости.
- •Пористость и емкостные свойства пласта. Источники информации. Способ задания.
- •22. Моделирование трещиновато-порового пласта.
- •23. Данные о насыщенности и капиллярном давлении. Источники информации и способ задания.
- •24. Факторы, влияющие на определение размеров расчетных блоков.
- •26. Переход от геологической модели к гидродинамической. Процедура масштабирования (upscaling).
2. Моделирование фильтрации на макро и микро уровне
Микро – на уровне пор, макро – все наши решатели, наша структура уходит на интегральные уравнения, фазовую проницаемость
3. Геологические и гидродинамические модели
Геологическая модель
- Размеры (мощность)
- Контур
- Насыщенность
- Пористость
- Стратиграфическая и прочностная структура пласта
Гидродинамические модели
• модели двух- и трехфазной фильтрации несмешивающихся жидкостей (модель нелетучей нефти),
• модель многокомпонентной фильтрации (композиционная модель),
• модель неизотермической фильтрации,
• модели физико-химических методов воздействия на пласт (полимерного заводнения, закачки поверхностно-активных веществ, углекислого газа и т. п.),
• модели фильтрации в среде с двойной пористостью и с двойной проницаемостью для моделирования процессов в трещиновато-поровых коллекторах.
4. Разномасштабные модели фильтрации.
Процесс моделирования представляет собой воспроизведение поведения объекта с помощью модели. Важно отметить, что моделирование ни в коей мере не заменяет непосредственного изучения объекта, которое и является основным источником информации об объекте, используемой при моделировании.
Модели, как правило, бывают двух видов: физические и математические.
В большинстве случаев физические модели имеют ту же физическую природу, что и изучаемый объект. Эксперименты на физических моделях проводят для исследования закономерностей изучаемого явления. Масштабные модели строятся с соблюдением принципов подобия [25]. Необходимыми условиями такого моделирования являются геометрическое и физическое подобие модели и натуры: значения переменных величин, характеризующих явление для модели и для натуры в сходственные моменты времени в сходственных точках пространства, должны быть пропорциональны. Результаты экспериментов, поставленных на масштабной модели,
могут быть перенесены на изучаемый объект путем пересчета, т.е. умножения каждой из определяемых величин на постоянный для всех величин данной размерности множитель — коэффициент подобия. Однако изготовить полностью подобные модели пластов не представляется возможным, поэтому этот метод моделирования не получил широкого распространения при прогнозировании месторождений углеводородов. Элементарные модели обычно используют для проведения лабораторных экспериментов по изучению свойств пород и насыщающих их флюидов. В этих экспериментах, как правило, используют реальные или смоделированные пластовые породы и жидкости. Результаты лабораторных исследований являются важным источником информации о пласте.
Среди физических моделей отдельную группу составляют аналоговые модели, которые воспроизводят процесс физически подобный оригиналу, но подчиняющийся другой группе физических законов. Например, аналогия между характеристиками гидродинамических и электротехнических процессов использовалась в резистивно-емкостных сетках - электроинтеграторах, применяемых для создания электрических моделей нефтяных пластов. В таких моделях перепад давления моделировался электрическим напряжением, дебит жидкости — силой тока, проводимость — электрической проводимостью, объем флюидов - электрической емкостью и т.д. Аналогия между фильтрацией флюидов в пористой среде и потоком ионов в электрическом потенциальном поле использовалась в электролитических моделях пластов. Аналоговые модели обычно были очень громоздкими. Перестройка модели была сопряжена со значительными сложностями. Поэтому с появлением компьютеров и развитием вычислительной техники аналоговые модели были практически полностью вытеснены компьютерными математическими моделями [1,9,15,19,32,50,51].
Математическая модель представляет собой приближенное описание поведения изучаемого объекта с помощью математических символов. Процесс математического моделирования - изучения объекта с помощью математической модели — можно условно подразделить на четыре взаимосвязанных этапа:
формулирование в математических терминах законов, описывающих поведение объекта;
решение прямой задачи, т.е. получение путем исследования модели выходных данных для дальнейшего сопоставления с результатами наблюдений за объектом моделирования;
адаптация модели по результатам наблюдения, решение обратных задач, т.е. определение характеристик модели, которые оставались неопределенными;
4. анализ модели, ее модернизация по мере накопления новой информации об изучаемом объекте, постепенный переход к новой более совершенной модели.