Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
вопросы по статистике.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
892.03 Кб
Скачать

46) Метод укрупнения интервалов

Укрупнение интервалов – это простейший метод сглаживания уровней ряда с целью выявить основную тенденцию их изменения. При этом для укрупненных интервалов определяется итоговое значение или средняя величина исследуемого показателя. Этот метод особенно эффективен, если первоначальные уровни ряда соответствуют коротким промежуткам времени. Например, если есть данные о ежесуточной погрузке грузов по какой-либо железной дороге за месяц, то в таком ряду вероятны значительные колебания уровней, так как чем меньше период, за который приводятся данные, тем больше влияния случайных факторов.

Чтобы устранить это влияние, рекомендуется укрупнить интервалы времени (например, до 5 или 10 дней) и рассчитать общий или среднесуточный объем погрузок (соответственно по пятидневкам или декадам). В ряду с укрупненными интервалами времени закономерность изменения уровней будет более наглядной.

 

Метод простого скользящего среднего

Для измерения сезонных колебаний статистикой предложе­ны различные методы. Наиболее простые и часто употребляемые из них:

  • метод абсолютных разностей

  • метод относительных разностей

  • построение индексов сезонности

Из группы методов скользящего среднего самым простым является метод простого скользящего среднего по n-узлам. В этом методе среднее фиксированного числа n-последних наблюдений используется для оценки следующего значения уровня ряда.

Значение прогноза, полученного методом простого скользящего среднего, всегда меньше фактического значения — если исходные данные монотонно возрастают, и наоборот больше фактического значения — если исходные данные монотонно убывают. Поэтому с помощью простого скользящего среднего нельзя получить точных прогнозов. Этот метод лучше всего подходит для данных с небольшими случайными отклонениями от некоторого постоянного или медленно меняющегося значения.

I. Метод простого скользящего среднего имеет два недостатка:

  • возникает в результате того, что при вычислении прогнозируемого значения самое последнее наблюдение имеет такой же вес (значимость), как и предыдущее, т.е. присвоение равного веса, противоречит интуитивному представлению о том, что во многих случаях последние данные могут больше сказать о том, что произойдет в ближайшем будущем, чем предыдущие.

  • необходимо хранить большой объем информации.

47) Основы метода аналитического выравнивания рядов динамики

Более совершенным приемом выявления основной тенденции развития в рядах динамики является аналитическое выравнивание. При изучении общей тенденции методом аналитического выравнивания исходят из того, что изменения уровней ряда динамики могут быть с той или иной степенью точности приближения выражены определенными математическими функциями. Вид уравнения определяется характером динамики развития конкретного явления. На практике по имеющемуся временному ряду задают вид и находят параметры функции y=f(t), а затем анализируют поведениеотклонений от тенденции. Чаще всего при выравнивании используются следующие зависимости: линейная, параболическая и экспоненциальная. Во многих случаях моделирование рядов динамики с помощью полиномов или экспоненциальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции. В таких случаях следует использовать гармонический анализ (гармоники ряда Фурье). Применение, именно, этого метода предпочтительно, поскольку он определяет закон, по которому можно достаточно точно спрогнозировать значения уровней ряда.

Целью же аналитического выравнивания динамического ряда является определение аналитической или графической зависимости y=f(t). Функцию y=f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. Это могут быть различные функции.

48) СЕЗОННЫЕ КОЛЕБАНИЯ [seasonal fluctuations] — сезонная компонента временного ряда, накладываемая часто на основную тенденцию, тренд. Строго говоря, определение “сезонные” не вполне точное, поскольку имеются в виду периодические колебания экономических показателей, необязательно связанные с природно-климатическими условиями (они могут объясняться также техническими, экономическими, культурными факторами).

Для учета С. к. применяются метод простых средних (в случаях постоянства общей тенденции), метод скользящей средней, которым элиминируется тренд (когда С. к. “правильны”, т. е. взаимно погашают друг друга на интервале сглаживания временного ряда), и другие, более сложные методы. Часто сезонные колебания приближенно описываются синусоидами и другими тригонометрическими функциями.