
- •1. Внешние и внутренние силы. Применение метода сечения для определения внутренних сил и напряжений
- •4. Расчёт на прочность при растяжении и сжатии. Допускаемое напряжение и коэффициент запаса.
- •5. Потенциальная энергия упругой деформации
- •6 Напряжения по наклонным сечениям при осевом растяжении или сжатии
- •Чистый сдвиг
- •9. Напряженные состояния
- •Главные напряжения и главные площадки
- •11. Обобщенный закон Гука. Деформация при плоском и объемном напряжении состояния.
- •12. Теории прочности
- •13. Напряжение в брусе при поперечном изгибе
- •14.Геометрические характеристики плоских сечений
- •Просуммировав (проинтегрировав) такие произведения по всей площади фигуры, получаем статические моменты относительно осей y и X: ; [см3, м3, т.Д.].
- •Моменты инерции плоских сечений.
- •Свойства аддиативности моментов инерции.
- •Изменение моментов инерции при параллельном переносе осей координат.
- •15. Зависимость между моментами инерции при повороте осей:
- •Замечание. Геометрические характеристики сечений, координаты центров тяжести сечений относительно начальных и центральных осей целесообразно оформить в виде таблицы (см. Пример расчета),
- •20. Нормальное напряжение при чистом изгибе.
- •Расчет на прочность при изгибе
- •21. Нормальные и касательные напряжения при поперечном изгибе
- •4.1. Дифференциальное уравнение изогнутой оси балки и его интегрирование.
- •26.Потенциальная энергия упругой деформации
- •30. Канонические уравнения метода сил
- •31.Косой изгиб
- •32. Ядро сечения
- •33. Кручение круглых валов
- •Внутренний крутящий момент
- •34. Определение критических сил для идеальных стержней при различном креплении концевых сечений
- •35. Критическое напряжение. Пределы применимости формулы эйлера
4.1. Дифференциальное уравнение изогнутой оси балки и его интегрирование.
При изгибе ось балки искривляется, а поперечные сечения перемещаются поступательно и поворачиваются вокруг нейтральных осей, оставаясь при этом нормальными к изогнутой продольной оси (рис. 8.22). Деформированная (изогнутая) продольная ось балки называется упругой линией, а поступательные перемещения сечений, равные перемещениям y=y(x) их центров тяжести сечений – прогибами балки.
Рис. 8.22.
Между прогибами y(x) и углами поворота сечений θ(x) существует определенная зависимость. Из рис. 8.22 видно, что угол поворота сеченияθ равен углу φ наклона касательной к упругой линии (θ и φ - углы с взаимноперпендикулярными сторонами). Но согласно геометрическому смыслу первой производной y/=tgθ. Следовательно, tgθ=tgφ=y/.
В пределах упругих деформаций прогибы балок обычно значительно меньше высоты сечения h, а углы поворота θ не превышают 0.1 – 0.15 рад. В этом случае связь между прогибами и углами поворота упрощается и принимает вид θ=y/.
Определим теперь форму упругой линии. Влияние перерезывающих сил Q на прогибы балок, как правило, незначительно. Поэтому с достаточной точностью можно принять, что при поперечном изгибе кривизна упругой линии зависит только от величины изгибающего момента Mz и жесткости EIz (см. уравнение (8.8)):
|
(8.26) |
В то же время в неподвижной системе координат кривизна упругой линии, как и всякой плоской кривой,
|
(8.27) |
Приравнивая правые части (8.26) и (8.27) и учитывая, что правила знаков для Mz и y// были приняты независимо друг от друга, получаем
|
(8.28) |
Это равенство называется дифференциальным уравнением упругой линии. При малых деформациях второе слагаемое в знаменателе мало по сравнению с единицей (при θ=0.1 рад (y/)2=0.01) и им можно пренебречь. В результате получим приближенное дифференциальное уравнение упругой линии балки
|
(8.29) |
Выбор знака в правой части (8.29) определяется направлением координатной оси y, так как от этого направления зависит знак второй производной y//. Если ось направлена вверх, то, как видно из рис. 8.23, знаки y// и Mz совпадают, и в правой части надо оставить знак плюс. Если же ось направлена вниз, то знаки y// и Mz противоположны, и это заставляет выбрать в правой части знак минус.
Заметим, что уравнение (8.29) справедливо только в пределах применимости закона Гука и лишь в тех случаях, когда плоскость действия изгибающего момента Mz содержит одну из главных осей инерции сечения.
25. Определение прогибов и углов поворота поперечного сечения балки определяют с помощью универсального уравнения изогнутой оси балки(универсального уравнения упругой линии балки)
Формула (закон изменения) прогиба балки в сечении с координатой z и угол поворота сечения (рис. 7.15):
a и b – абсциссы точек приложения сосредоточенного момента M и сосредоточенной силы P, соответственно; c и d – координаты начала и конца участка, нагруженного распределенной нагрузкой.
В формулы входят только внешние усилия, которые расположены левее сечения, в котором определяются перемещения балки.
Если какая-нибудь нагрузка имеет противоположное указанному на рисунке 7.15 направление, то у соответствующих слагаемых в формулах прогибов и углов поворота сечений следует поменять знак на противоположный.
Прогиб
и
угол поворота
балки
в начале координат (начальные параметры)
определяются из условий закрепления
балки.
Искривленная ось балки может описываться уравнением в дифференциальной форме , которое называется уравнением упругой линии балки и имеет общий вид:
± EJ (d2y/dx2) = M или ± EJ y″= M
Где Е – модуль упругости первого рода ,
Y - перемещение сечения балки,
Jz = bh3/12 - экваториальный момент инерции сечения балки относительно оси z.
М – изгибающий момент в сечении.
y' = dy/ dx = tg θ
где θ - угол поворота сечения балки при нагружении изгибающей нагрузкой .
Ввиду малости прогиба по сравнению с длинновыми размерами балки можно принять tg θ = θ
Уравнение прогибов сечений : Для первого участка :
EJY = - F(L-a)x13/6L + Fa(L-a)(2L-a)/6L;
Для второго участка
EJY = - F(L-a)x23/6L +F(x2-a)3/6+ Fa(L-a)(2L-a)/6L;
Полученные зависимости позволяют определить прогибы и на консольном участке балки.
Преимущество аналитического метода- высокая точность расчетов ,а недостаток – сложность и громоздкость.
Граничные условия могут быть статическими, кинематическими и смешанными.
Статические ГУ имеют вид
(2.20)
где l, m, n –
направляющие косинусы;
–
проекции внешних сил.
Если заданы компоненты смещений, то такие ГУ называют кинематическими. Если заданы одновременно компоненты перемещений и напряжений, то условия называют смешанными.