
- •Проектирование асоиу в современных условиях
- •Принципы создания асоиу
- •Разработчик ас в современной системе разделения труда.
- •Особенности рынка асоиу и программного обеспечения.
- •Асоиу как объект проектирования
- •Аспекты представления асоиу. Функциональное представление асоиу.
- •Аспекты представления асоиу. Структурное представление асоиу.
- •Аспекты представления асоиу. Компонентное представление асоиу.
- •Проектирование асоиу и программного обеспечения как сложной системы. Понятие простых и сложных систем, признаки сложной системы. Способы борьбы со сложностью.
- •Методы проектирования программного продукта как сложной системы: структурный, объектный, потоковый.
- •Описание бизнес-процессов. Концепция. Форматы графических схем бизнес-процессов.
- •Модели объекта автоматизации. Методика функционального проектирования idef0 (Integrated deFinition 0).
- •Моделирование бизнес-процессов спецификация требований на основе структурного подхода
- •Модели объекта автоматизации. Методика информационного проектирования idef3.
- •Модели объекта автоматизации. Методика dfd. Примеры диаграмм.
- •Автоматизация проектирования. Case – системы bPwin. Примеры диаграмм
- •Автоматизация проектирования. Case – системы eRwin. Примеры диаграмм.
- •Организация процесса конструирования программного обеспечения ас.
- •Понятие метода и технологии конструирования.
- •Классический жизненный цикл программных систем. Макетирование.
- •Инкрементная модель стратегии конструирования
- •Спиральная модель.
- •Тяжеловесные и облегченные процессы. Xp-процессы.
- •Унифицированный процесс проектирования по асоиу
- •Моделирование бизнес-процессов спецификация требований на основе объектно-ориентированного подхода. Методика rup.
- •1.Определение требований
- •2.Анализ
- •3.Проектирование
- •4.Реализация
- •5.Тестирование
- •Унифицированный язык моделирования. Предметы, отношения и диаграммы в uml.
- •Руководство программным проектом
- •Процессы руководства проектом.
- •Измерения, меры и метрики. Размерно-ориентированные метрики.
- •Измерения, меры и метрики. Функционально-ориентированные метрики.
- •Измерения, меры и метрики. Метрики объектно-ориентированных программных систем.
- •Набор метрик Чидамбера и Кемерера
- •Использование метрик Чидамбера-Кемерера
- •Оценка проекта на основе loc и fp метрик.
- •Оценка проекта на основе loc и fp метрик.
- •Стандартизация проектирования ас и программного обеспечения
- •Общие понятия стандартизации. Международные и национальные организации, разрабатывающие стандарты.
- •Национальные организации, разрабатывающие стандарты
- •Нормативные документы по стандартизации и виды стандартов
- •Стандарты в области программного обеспечения ас
- •Стандарты комплекса гост р 34. Стадии и этапы проектирования ас, определяемые стандартом гост 34.602.
- •Стандарты комплекса гост р 34. Содержание технического задания на создание ас, гост 34.601.
- •Процессы жизненного цикла программного средства, определяемые в стандарте гост p исо/мэк 12207.
- •Фазы разработки и внедрения асоиу.
- •Фаза «Обоснование»
- •Фаза «Создание»
- •Реализация автоматизированной системы
- •Тестирование программного продукта
- •Основные понятия и принципы тестирования, тестирование «белого» и «черного» ящиков
- •Тестирование «черного ящика»
- •Тестирование «белого ящика»
- •Особенности тестирования «белого ящика»
- •Тестирования базового пути. Цикломатическая сложность программного обеспечения.
- •Потоковый граф
- •Цикломатическая сложность
- •Тестирования условий. Тестирования циклов Способы тестирования условий
- •Тестирование ветвей и операторов отношений
- •Способ тестирования потоков данных
- •Тестирование циклов
- •Простые циклы
- •Вложенные циклы
- •Объединенные циклы
- •Неструктурированные циклы
- •Особенности объектно-ориентированного тестирования по.
- •Изменение методики при объектно-ориентированном тестировании
- •Тестирование объектно-ориентированной интеграции
- •Объектно-ориентированное тестирование правильности
- •Управление качеством ас
- •Процесс управления качеством. Обеспечение и планирование качества.
- •Процесс управления качеством
- •Планирование качества
- •Контроль качества. Измерение показателей программных систем
- •Контроль качества
- •Измерение показателей по
- •Стандарт исо/мэк 15504. Модель зрелости конструирования программных систем. (смм).
- •Модели качества процессов конструирования
- •V. Высокая оптимизация/Optimizing
- •IV. Управляемость/Managed
- •III. Начало оптимизации (Определенность) /Defined
- •II. Контроль/Repeatable
- •I. Начальный уровень (хаос)/Initial
- •Гост исо/мэк 12119-2000. Требования к качеству пакетов программ.
- •1 Область применения
- •3 Требования к качеству
- •Описание продукта
- •3.1.1 Общие требования к содержанию
- •3.1.2 Обозначения и указания
- •3.1.4 Формулировки надежности
- •3.1.5 Формулировки практичности
- •3.2 Документация пользователя
- •3.3 Программы и данные
- •Гост исо/мэк 12119-2000. Указания по тестированию пакетов программ.
- •4 Указания по тестированию
- •4.1 Необходимые условия для тестирования
- •4.2 Работы по тестированию
- •4.3 Протоколы тестирования
- •4.4 Отчет о тестировании
- •4.5 Дополнительное тестирование
- •Документация автоматизированной системы
- •Предпроектная документация. Материалы обследования объекта автоматизации. Техническое задание. Договорная документация.
- •Проектная документация.
- •Рабочая документация.
- •Эксплуатационная документация
- •Организационно-распорядительная документация. Оформление документации.
- •Интегрированная система управления производством класса erp (Enterprise Recourse Planning).
- •Концепция erp II – Enterprise Resource and Relationship Processing (Управление внутренними ресурсами и внешними связями предприятия)
Инкрементная модель стратегии конструирования
Существуют 3 стратегии конструирования ПО:
однократный проход (водопадная стратегия) — линейная последовательность этапов конструирования;
инкрементная стратегия. В начале процесса определяются все пользовательские и системные требования, конструирование выполняется в виде последовательности версий. Первая версия реализует часть запланированных возможностей, следующая версия реализует дополнительные возможности и т. д., пока не будет получена полная система;
эволюционная стратегия. Система также строится в виде последовательности версий, но в начале процесса определены не все требования. Требования уточняются в результате разработки версий.
Инкрементная модель является классическим примером инкрементной стратегии конструирования (рис. 3). Она объединяет элементы последовательной водопадной модели с итерационной философией макетирования.
Первый инкремент приводит к получению базового продукта, реализующего базовые требования (Например создание файлов и ввод и вывод информации –базовая часть проекта).
План следующего инкремента предусматривает модификацию базового продукта, обеспечивающую дополнительные характеристики и функциональность (Например дополнительная обработка и формирование отчетности).
По своей природе инкрементный процесс итеративен, но, в отличие от макетирования, инкрементная модель обеспечивает на каждом инкременте работающий продукт.
Рис. 3 Инкрементная модель
Модель быстрой разработки приложений (RAD).
Модель быстрой разработки приложений (Rapid Application Development) - инкрементной стратегии конструирования (рис. 4).
RAD-модель обеспечивает экстремально короткий цикл разработки, высокоскоростную адаптация линейной последовательной модели.
Быстрая разработка достигается за счет использования компонентно-ориентированного конструирования и параллельных процессов (60-90 дней). Ориентирована на разработку ИС и выделяет следующие этапы:
бизнес-моделирование: моделируется информационный поток между бизнес-функциями.
моделирование данных: отображается в набор объектов данных (сущности отношение между ними).
моделирование обработки: создаются описания обработки для добавления, модификации, удаления или нахождения (исправления) объектов данных;
генерация приложения: путем повторно используемых программных компонентов или создания повторно используемых компонентов. Для обеспечения конструирования используются утилиты автоматизации;
тестирование и объединение. Уменьшение время тестирования за счет использования готовых проверенных компонент.
Рис. 4. Модель быстрой разработки приложений
Применение RAD имеет- и свои недостатки, и ограничения.
Для больших проектов в RAD требуются существенные людские ресурсы (необходимо создать достаточное количество групп).
RAD применима только для таких приложений, которые могут декомпозироваться на отдельные модули и в которых производительность не является критической величиной.
RAD не применима в условиях высоких технических рисков (то есть при использовании новой технологии).