
- •Проектирование асоиу в современных условиях
- •Принципы создания асоиу
- •Разработчик ас в современной системе разделения труда.
- •Особенности рынка асоиу и программного обеспечения.
- •Асоиу как объект проектирования
- •Аспекты представления асоиу. Функциональное представление асоиу.
- •Аспекты представления асоиу. Структурное представление асоиу.
- •Аспекты представления асоиу. Компонентное представление асоиу.
- •Проектирование асоиу и программного обеспечения как сложной системы. Понятие простых и сложных систем, признаки сложной системы. Способы борьбы со сложностью.
- •Методы проектирования программного продукта как сложной системы: структурный, объектный, потоковый.
- •Описание бизнес-процессов. Концепция. Форматы графических схем бизнес-процессов.
- •Модели объекта автоматизации. Методика функционального проектирования idef0 (Integrated deFinition 0).
- •Моделирование бизнес-процессов спецификация требований на основе структурного подхода
- •Модели объекта автоматизации. Методика информационного проектирования idef3.
- •Модели объекта автоматизации. Методика dfd. Примеры диаграмм.
- •Автоматизация проектирования. Case – системы bPwin. Примеры диаграмм
- •Автоматизация проектирования. Case – системы eRwin. Примеры диаграмм.
- •Организация процесса конструирования программного обеспечения ас.
- •Понятие метода и технологии конструирования.
- •Классический жизненный цикл программных систем. Макетирование.
- •Инкрементная модель стратегии конструирования
- •Спиральная модель.
- •Тяжеловесные и облегченные процессы. Xp-процессы.
- •Унифицированный процесс проектирования по асоиу
- •Моделирование бизнес-процессов спецификация требований на основе объектно-ориентированного подхода. Методика rup.
- •1.Определение требований
- •2.Анализ
- •3.Проектирование
- •4.Реализация
- •5.Тестирование
- •Унифицированный язык моделирования. Предметы, отношения и диаграммы в uml.
- •Руководство программным проектом
- •Процессы руководства проектом.
- •Измерения, меры и метрики. Размерно-ориентированные метрики.
- •Измерения, меры и метрики. Функционально-ориентированные метрики.
- •Измерения, меры и метрики. Метрики объектно-ориентированных программных систем.
- •Набор метрик Чидамбера и Кемерера
- •Использование метрик Чидамбера-Кемерера
- •Оценка проекта на основе loc и fp метрик.
- •Оценка проекта на основе loc и fp метрик.
- •Стандартизация проектирования ас и программного обеспечения
- •Общие понятия стандартизации. Международные и национальные организации, разрабатывающие стандарты.
- •Национальные организации, разрабатывающие стандарты
- •Нормативные документы по стандартизации и виды стандартов
- •Стандарты в области программного обеспечения ас
- •Стандарты комплекса гост р 34. Стадии и этапы проектирования ас, определяемые стандартом гост 34.602.
- •Стандарты комплекса гост р 34. Содержание технического задания на создание ас, гост 34.601.
- •Процессы жизненного цикла программного средства, определяемые в стандарте гост p исо/мэк 12207.
- •Фазы разработки и внедрения асоиу.
- •Фаза «Обоснование»
- •Фаза «Создание»
- •Реализация автоматизированной системы
- •Тестирование программного продукта
- •Основные понятия и принципы тестирования, тестирование «белого» и «черного» ящиков
- •Тестирование «черного ящика»
- •Тестирование «белого ящика»
- •Особенности тестирования «белого ящика»
- •Тестирования базового пути. Цикломатическая сложность программного обеспечения.
- •Потоковый граф
- •Цикломатическая сложность
- •Тестирования условий. Тестирования циклов Способы тестирования условий
- •Тестирование ветвей и операторов отношений
- •Способ тестирования потоков данных
- •Тестирование циклов
- •Простые циклы
- •Вложенные циклы
- •Объединенные циклы
- •Неструктурированные циклы
- •Особенности объектно-ориентированного тестирования по.
- •Изменение методики при объектно-ориентированном тестировании
- •Тестирование объектно-ориентированной интеграции
- •Объектно-ориентированное тестирование правильности
- •Управление качеством ас
- •Процесс управления качеством. Обеспечение и планирование качества.
- •Процесс управления качеством
- •Планирование качества
- •Контроль качества. Измерение показателей программных систем
- •Контроль качества
- •Измерение показателей по
- •Стандарт исо/мэк 15504. Модель зрелости конструирования программных систем. (смм).
- •Модели качества процессов конструирования
- •V. Высокая оптимизация/Optimizing
- •IV. Управляемость/Managed
- •III. Начало оптимизации (Определенность) /Defined
- •II. Контроль/Repeatable
- •I. Начальный уровень (хаос)/Initial
- •Гост исо/мэк 12119-2000. Требования к качеству пакетов программ.
- •1 Область применения
- •3 Требования к качеству
- •Описание продукта
- •3.1.1 Общие требования к содержанию
- •3.1.2 Обозначения и указания
- •3.1.4 Формулировки надежности
- •3.1.5 Формулировки практичности
- •3.2 Документация пользователя
- •3.3 Программы и данные
- •Гост исо/мэк 12119-2000. Указания по тестированию пакетов программ.
- •4 Указания по тестированию
- •4.1 Необходимые условия для тестирования
- •4.2 Работы по тестированию
- •4.3 Протоколы тестирования
- •4.4 Отчет о тестировании
- •4.5 Дополнительное тестирование
- •Документация автоматизированной системы
- •Предпроектная документация. Материалы обследования объекта автоматизации. Техническое задание. Договорная документация.
- •Проектная документация.
- •Рабочая документация.
- •Эксплуатационная документация
- •Организационно-распорядительная документация. Оформление документации.
- •Интегрированная система управления производством класса erp (Enterprise Recourse Planning).
- •Концепция erp II – Enterprise Resource and Relationship Processing (Управление внутренними ресурсами и внешними связями предприятия)
Модели объекта автоматизации. Методика dfd. Примеры диаграмм.
Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую АСОИУ, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.
DFD- диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе. С их помощью эти требования представляются в виде иерархии процессов, связанных потоками данных. Главная цель представления – продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами. Модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи пользователю. Диаграммы верхних уровней иерархии определяют основные процессы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня.
Основные компоненты: внешние сущности, системы и подсистемы, процессы, накопители данных, потоки данных.
Внешняя сущность – материальный объект или физическое лицо, представляющее собой источник или приемник информации. Внешняя сущность обозначается квадратом, расположенным над диаграммой и бросающим на нее тень.
Процесс преобразования входных потоков данных в выходные. Номер процесса служит для его идентификации. В поле имени вводится наименование процесса (вычислить информацию, рассчитать поступление денег). Информация в поле физической реализации показывает, какое подразделение организации, программа, аппаратное устройство выполняет данный процесс.
Накопитель данных – абстрактное устройство для хранения информации, которую можно извлечь. Накопитель данных на диаграмме идентифицируется буквой D и произвольным числом. Имя накопителя выбирается из соображений информативности.
Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Он изображается линией, оканчивающейся стрелкой которая показывает направление потока. Каждый поток имеет имя, отражающий его содержание.
Автоматизация проектирования. Case – системы bPwin. Примеры диаграмм
Графические средства моделирования предметной области позволяют разработчикам в наглядном виде изучать существующую АСОИУ, перестраивать ее в соответствии с поставленными целями и имеющимися ограничениями.
CASE-средства обладают следующими основными особенностями:
имеют мощные графические средства для описания и документирования АСОИУ, обеспечивающие удобный интерфейс с разработчиком и развивающие его творческие возможности;
осуществляют интеграцию отдельных компонент CASE-средств, обеспечивающую управляемость процессом разработки систем;
используют специальным образом организованное хранилище проектных метаданных (репозитория).
Интегрированное CASE-средство должно содержать следующие компоненты:
репозиторий, являющийся основой CASE-средства. Он должен обеспечивать хранение версий проекта и его отдельных компонентов, синхронизацию поступления информации от различных разработчиков при групповой разработке, контроль метаданных на полноту и непротиворечивость;
графические средства анализа и проектирования, обеспечивающие создание и редактирование иерархически связанных диаграмм (DFD, ERD и др.), образующих модели АСОИУ;
средства разработки приложений, включая языки 4GL и генераторы кодов;
средства конфигурационного управления;
средства документирования;
средства тестирования;
средства управления проектом;
средства реинжиниринга.
Все современные CASE-средства могут быть классифицированы в основном по типам и категориям. Классификация по типам отражает функциональную их ориентацию на те или иные процессы ЖЦ.
Классификация по категориям определяет степень интегрированности по выполняемым функциям и включает следующее:
отдельные локальные средства, решающие небольшие автономные задачи (tools);
набор частично интегрированных средств, охватывающих большинство этапов жизненного цикла систем (toolkit);
полностью интегрированные средства, поддерживающие весь ЖЦ систем и связанные общим репозиторием.
Помимо этого CASE-средства можно классифицировать по следующим признакам:
применяемым методологиям и моделям систем и БД;
степени интегрированности с СУБД;
доступным платформам.
Классификация по типам в основном совпадает с компонентным составом CASE-средств.
На сегодняшний день российский рынок программного обеспечения располагает следующими наиболее развитыми CASE-средствами: Vantage Team Builder (Westmount I-CASE), Designer/2000, Silverrun, ERwin+Bpwin, S-Designor, CASE-Аналитик, CASE /4/0, PRO-IV, System Architect, Visible Analyst Workbench, EasyCASE; VIS; RATIONAL ROSE.
BPwin —средство системного анализа деловой и производственной активности, позволяющее адекватно отслеживать соответствие структуры бизнеса, документооборота, финансовых потоков жестким и динамичным требованиям экономики. Результатом использования BPwin является исключение лишних и бесполезных действий, снижение затрат, повышение гибкости и эффективности всего вашего бизнеса. BPwin —инструмент менеджеров и бизнес-аналитиков, средство моделирования процессов при создании корпоративных информационных систем.
Основные достоинства BPwin:
Применение универсальных графических языков бизнес-моделирования IDEF0, IDEF3 и DFD обеспечивает логическую целостность и полноту описания, необходимую для достижения точных и непротиворечивых результатов.
Интерактивное выделение объектов обеспечивает постоянную визуальную обратную связь при построении модели. BРwin поддерживает ссылочную целостность, не допуская определения некорректных связей и гарантируя непротиворечивость отношений между объектами при моделировании.
Встроенный механизм вычисления стоимости позволяет оценивать и анализировать затраты на осуществление различных видов деловой активности. BPwin может генерировать отчеты непосредственно в формате MS Excel для последующей обработки и использования в других приложениях. Связь с ERwin (моделирование данных в стандарте IDEF1X) позволяет сократить время проектирования и разработки сложных информационных систем. Для системных аналитиков тесная интеграция BРwin с инструментом проектирования баз данных открывает уникальные возможности по созданию действительно комплексных систем, в которых ERwin служит для описания информационных объектов системы, в то время как BPwin отражает функциональные особенности предметной области.
Основные характеристики BPwin:
Развитая методология функционального моделирования на основе IDEF0;
Мощные редакторы для описания операций, связей и вычисления затрат на выполнение работ;
Иерархическая структура диаграмм, облегчающая последовательное уточнение элементов модели
Контекстные диаграммы для описания границ системы, области действия, назначения объектов;
Декомпозиционные диаграммы для описания особенностей взаимодействия различных процессов;
Расширенные возможности по поддержанию ссылочной целостности;
Поддержка методологии IDEF3;
Экспорт моделей в средства имитационного моделирования;
Интеграция и связь со средством проектирования баз данных ERwin (методология IDEF1X);
Интеграция с ModelMart. Сервер приложений для программных продуктов CA ModelMart поддерживает мощный набор инструментальных программных средств, обеспечивающих совместное (групповое) проектирование и разработку программных систем, включая механизмы объединения моделей и анализа изменений, контроль версий, возможность создания «компонент» модели и т.д. Для организации хранилища моделей в ModelMart используются СУБД на платформах Oracle, Sybase, Informix или SQL Server. Кроме того, поддерживаются прямые связи ModelMart с ERwin и BPwin;
Расширенная архитектура. BPwin поддерживает 16- и 32-х разрядные системы, позволяя организовать совместную работу для всех участников проекта;
Автоматическая поддержка изменения размеров. BPwin поддерживает автоматическую настройку размеров диаграмм и возможность изменения масштабов изображения моделей.