- •Предмет теоретической механики. Содержание разделов. Основные понятия и определения (механическое движение, механическое взаимодействие).
- •Аксиомы статики и следствия из них. Задачи статики.
- •Свободное и несвободное твердое тело. Связи и реакции связей. Основные типы связей и их реакции. Аксиома связей.
- •Сходящаяся система сил. Две основные задачи статики для сходящейся системы сил. Геометрический и аналитический способы сложения сил.
- •Равнодействующая сходящейся системы сил и способы ее нахождения.
- •Геометрическое и аналитическое условие равновесия сходящейся системы сил. Теорема о трех силах.
- •Понятие о ферме, назначение, применение. Простейшая ферма. Зависимость между количеством шарниров и стержней. Основные определения и допущения.
- •Определения усилий в стержнях фермы методом вырезания узлов. Достоинства и недостатки метода.
- •Определения усилий в стержнях фермы методом Риттера. Достоинства и недостатки метода.
- •Векторный момент силы относительно центра и его свойства.
- •Момент силы относительно оси. Зависимость между моментом силы относительно центра и оси.
- •Пара сил и ее алгебраический момент. Свойства алгебраического момента пары.
- •Векторный момент пары сил и его свойства. Теорема о сумме моментов сил пары.
- •Эквивалентные пары сил. Теорема об эквивалентности пар в плоскости и следствия из нее
- •Эквивалентные пары. Теорема об эквивалентности пар в пространстве.
- •Главный вектор и главный момент пространственной системы сил и формулы определения их величины и направления.
- •Частные случаи приведения пространственной системы сил. Условия и уравнения равновесия пространственной системы сил.
- •Теорема Вариньона о моменте равнодействующей силы относительно центра и оси.
- •Приведение произвольной плоской системы сил к центру. Главный вектор и главный момент произвольно плоской системы сил.
- •Главный вектор и главный момент произвольной плоской системы сил и формулы их вычисления. Частные случаи приведения произвольной плоской системы сил.
- •Условия и уравнения равновесия произвольной плоской системы сил. Три формы уравнений равновесия плоской системы сил.
- •Распределенные силы и их равнодействующая. Равновесие системы сочлененных тел. Силы внешние и внутренние. Статически определимые и неопределимые задачи.
- •Трение скольжения. Законы трения скольжения. Равновесие при наличии сил трения.С.94.
- •Угол и конус трения. Область равновесия.С.96.
- •Трение качения. Коэффициент трения качения. Момент сил трения качения.С.102.
- •Центр параллельных сил и его координаты.С.130.
- •Центр тяжести и его координаты. Центр тяжести объема, площади, линии.С.131-132.
- •Способы определения координат центра тяжести.С.132
- •Центр тяжести дуги окружности, треугольника кругового сегмента.С.135
- •Предмет кинематики. Основные понятия и определения. Задачи кинематики.С.138
- •Способы задания движения точки. Траектория точки.С.140
- •Определение скорости и ускорения точки при векторном способе задания движения.С.144
- •Определение скорости и ускорения точки при координатном способе задания движения.С.149
- •Естественный трехгранник, естественные оси координат. Алгебраическая скорость точки и ее физический смысл.
- •Определение ускорения точки при естественном способе задания движения.
- •Касательное и нормальное ускорение точки. Частные случаи движения точки.
- •Поступательное движение твердого тела. Теорема о скоростях и ускорениях точек при поступательном движении твердого тела.
- •Вращательное движение твердого тела. Уравнение движения. Угловая скорость и угловое ускорение. Векторы угловой скорости и углового ускорения.
- •Скорости и ускорения точек тела при вращательном движении.
- •Векторные формулы определения скорости и ускорения точки при вращательном движении тела.
- •Плоскопараллельное движение твердого тела. Уравнения движения. Разложение плоскопараллельного движения на простейшие.
- •Теорема о скоростях точек при плоскопараллельном движении. С. 183
- •Теорема о проекциях скоростей точек на прямую соединяющую эти точки. С. 184
- •Мгновенный центр скоростей. Доказательство существования.
- •Определение скоростей точек при плоскопараллельном движении твердого тела с помощью м.Ц.С. С. 186
- •Способы нахождения мгновенного центра скоростей. С.186-188, с. 203
- •Определение ускорений точек при плоскопараллельном движении твердого тела. С.196
- •Сложное движение точки. Определение понятий относительное, переносное, абсолютное движение. С.212
- •Теорема об определении скорости точки в сложном движении. С. 215
- •Определение ускорения точки в сложном движении (теорема Кориолиса). С. 221
- •Определения ускорения точки при поступательном переносном движении. С. 219
- •Кориолисово ускорение. Модуль, направление, физический смысл. С. 212
Предмет кинематики. Основные понятия и определения. Задачи кинематики.С.138
Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учёта их инертности (массы) и действующих на них сил. Под движением мы понимаем в механике изменение с течением времени положения данного тела в пространстве по отношению к другим телам. Для определения положения движущегося тела или точки с тем телом, по отношению к которому изучается движение, жестко связывают какую-нибудь систему координат, которая вместе с телом образуют систему отсчёта. Движение тел совершается в пространстве с течением времени. Пространство в механике мы рассматриваем, как трехмерное евклидово пространство. Все измерения в нём производятся на основании методов евклидовой геометрии. Время является скалярной, непрерывно изменяющейся величиной. Отсчёт времени ведётся от некоторого начального момента, о выборе которого в каждом случае уславливаются. Кинематически задать движение или закон движения тела (точки) значит задать положение этого тела относительно данной системы отсчёта в любой момент времени. Установление математических способов задания движения точек или тел является одной из важных задач кинематики. Основная задача кинематики состоит в том, чтобы, зная закон движения данного тела (или точки), определить все кинематические величины, характеризующие как движение тела в целом, так и движение каждой из его точек в отдельности.
Способы задания движения точки. Траектория точки.С.140
Естественный способ задания движения. Непрерывная линия, которую описывает движущаяся точка относительно данной системы отсчёта, называется траекторией точки. Если траекторией является прямая линия, движение точки называется прямолинейным, а если кривая – криволинейным.
1).
Естественным способом задания движения
удобно пользоваться в тех случаях,
когда траектория движущейся точки
известна заранее.
-
уравнение выражает закон движения
точки М вдоль траектории. Таким образом,
чтобы задать движение точки естественным
способом, надо задать: 1) траекторию
точки; 2) начало отсчёта на траектории
с указанием положительного и отрицательного
направлений отсчёта; 3) закон движения
точки вдоль траектории в виде
.
Заметим, что величина s
определяет положение движущейся точки,
а не пройденный ею путь. В случае
прямолинейного движения, если направить
ось Ox
вдоль траектории точки, будем иметь
закон прямолинейного движения
.
2) Координатный способ задания движения.
Чтобы знать закон движения точки, т.е.
ее положение в пространстве в любой
момент времени, надо знать значения
координат точки для каждого момента
времени, т.е. знать зависимости
,
,
.
Уравнения представляют собой уравнения
движения точки в декартовых прямоугольных
координатах. Они определяют закон
движения точки при координатном способе
задания движения. Если движение точки
совершается всё время в одной и той же
плоскости, то, приняв эту плоскость за
плоскость Oxy,
мы получим в этом случае два уравнения
движения
,
.
Уранения представляют собою одновременно
уранения траектории точки в параметрической
форме, где роль параметра играет время
t.
Исключив из уравнений движения время,
можно найти уравнение траетории в
обычной форме, т.е. в виде, дающем
зависимость между ее координатами. 3).
Векторный способ задания движения.
равенство
определяет закон криволинейного
движения точки в векторной форме, так
как оно позволяет в любой момент времени
t
построить соответствующий вектор к
и найти положение движущейся точки.
Геометрическое место концов вектора
r
, т.е. годограф этого вектора, определяет
траекторию движущейся точки. Векторный
способ задания движения удобен для
установления общих зависимостей, так
как позволяет описать движение точки
одним векторным уравнением вместо трёх
скалярных уравнений.
