
- •Лекція №1
- •1. Класифікація нанокомпозитів.
- •1.1. Загальні властивості наносистем
- •1.1.1. Розмірний ефект у наносистемах
- •1.5. Фрактальний аспект наносистем
- •1.5.1. Фрактали. Фрактальна геометрія
- •1.5.2. Фрактальна розмірність і методи її визначення
- •1.5.3. Фрактальність наноструктурованих плівок кремнезему
- •1.5.4. Аналіз кластер-кластерного агрегування електропровідних полімерів
- •1.5.5. Фрактальність поверхні
- •1.5.6. Фрактальність процесів
- •Залежність фізико-хімічних властивостей від розмірів наооб’єктів. Вплив розмірів наночастинок на оптичні, магнітні, електрохімічні, механічні та каталітичні властивості
- •1. Вплив температури на форму та розмір наночастинок
- •2. Взаємозв’язок розміру наночастинок з їхніми оптичними властивостями
- •3. Особливості електрохімічної поведінки нанорозмірних частинок
- •4. Вплив розмірів наночастинок на їхні механічні властивості
Лекція №1
1. Класифікація нанокомпозитів.
2. Фізична хімія наносистем: Розмірність нанооб’єктів.Фрактальність.
3. Класична і квантово-механічна теорія наносистем.
4. Залежність фізико-хімічних властивостей від розмірів наооб’єктів. Вплив розмірів наночастинок на оптичні, магнітні, електрохімічні, механічні та каталітичні властивості.
1.1. Загальні властивості наносистем
Становлення міждисциплінарної галузі знань нанонауки відбулось на межі фізики, хімії і біології. В процесі еволюції уявлень про наносистеми оформились загальні принципи і підходи до їх аналізу незалежно від природи компонентів, що складають наносистему. Однак зрозуміти специфіку наносистем можна краще в межах однієї концептуальної позиції. Подальший виклад буде базуватись на висвітленні фізико-хімічних підходів при аналізі наносистем. Термін “нанохімія”, який виник в середині 90-х років минулого століття, означає, що при переході від атомно-молекулярного до надмолекулярного рівня структурної організації речовини з’являються особливі фізико-хімічні властивості речовини. Предметом нанохімії є фізико-хімічне дослідження наносистем.
1.1.1. Розмірний ефект у наносистемах
Наносистему можна визначити як набір n-мірних нанооб’єктів – нуль-вимірних (0D) наночастинок (квантових точок), одновимірних (1D) волокон або нанодротин, двовимірних (2D) наноплівок, просторових (3D) нанокристалітів чи агрегатів, протяжність яких хоча б в одному вимірі лежить в межах від 0,1 до 100 нм, а також властивостей цих об’єктів і взаємодії між ними. Крім того, як обов’язковий компонент, до складу наносистеми також входитьнавколишнє середовище. Така система неоднорідна, бо, по-перше, неоднорідним є середовище, з іншого боку, нанотіла також неідентичні. Наносистеми належать до систем відкритого типу, тобто таких, які обмінюються з зовнішнім середовищем енергією та речовиною. З термодинамічного погляду наносистема нерівноважна і нестаціонарна, тому її властивості можна характеризувати функціями розподілу наночастинок за станами. Найголовнішою рисою наносистем є те, що будь-яка їхня властивість специфічно залежить від маси наночастинок. Залежність властивості від маси можна задати деякою функцією Хі(m), тоді як будь-яка властивість нанотіла характеризується власним значенням його маси mі і, відповідно до цієї маси, граничного розміру dmax.
Причина виникнення специфічних властивостей системи в наноінтервальному проміжку фізичних розмірів полягає у співрозмірності нанооб’єктів та дальнодії (протяжності дії) міжатомних сил. Коли розміри тіла менші від граничного (d < dmax), то всі атоми зближені настільки, що взаємодія кожного атома з будь-яким іншим суттєво впливає на властивість Хі. У протилежному випадку, коли розміри тіла перевищують граничний (d > dmax), то атоми віддалені один від одного настільки, що взаємодія між ними практично не впливає на властивість Хі. Через це можна вважати, що предметом нанохімії є вивчення об’єктів, в яких простежується значна взаємодія між атомами [1].
Стан
наносистеми в будь-який проміжок часу
визначається функціями розподілу
нанотіл (
,)
і середовища (
,)
за параметрами стану частинок Хі
і середовища і.
Дослідження системи зводиться до
встановлення закономірностей зміни
властивостей середовища і виявлення
взаємозв’язку між функціями (
,)
і (
,)
в процесі еволюції системи в часі. Стан
кожної наночастинки в будь-який момент
часу
визначається її масою m,
просторовими координатами і швидкістю
руху в лабораторній системі координат,
відстанню до кожної з наночастинок
системи, яка задається координатами
{Yi},
а також параметрами стану кожного з
атомів, які становлять частинку, тобто
внутрішніми координатами наночастинки
{Zi}.
Зв’язок властивостей наносистеми з
зовнішніми та внутрішніми параметрами
загалом виражає співвідношення
|
(1.1) |
У процесі еволюції наносистеми кожен із її складових атомів переходить з одного дозволеного стану в інший. Однак їхня кількість настільки значна, що зміну стану наночастинки можна характеризувати ймовірністю переходу Р із стану {Хi,0} в стан {Хi} протягом проміжку часу
|
(1.2) |
де Хiр і Хim – відповідно нижня і верхня межі дозволеного інтервалу зміни Хi. Інтегрування виразу (1.2) проводиться за всіма станами Хi.
Головне завдання теорії еволюції наносистем полягає в розрахунку функції ймовірності
|
(1.3) |
Якщо відома функція ймовірності, то можна розрахувати функціонал Gі, який характеризує швидкість еволюції наносистеми
|
(1.4) |
Тут КG– кінетичний коефіцієнт; Fi( , ) – рушійна сила елементарного процесу, відповідального за зміну внутрішніх Хi і зовнішніх параметрів .
Наносистема – це сукупність нанотіл (нанооб’єктів) у багатовимірному фазовому просторі, координати точок якого збігаються з координатами нанотіл. Поверхню можна уявити у вигляді набору структурних елементів, до яких з ймовірністю Pj приєднуються атоми з середовища, а рушійною силою взаємодії є різниця вільних енергій середовища і центру на наночастинці або ступінь насичення розчину
|
(1.5) |
де c – концентрація атомів в середовищі; cx – розчинність наночастинки. Оскільки
|
(1.6) |
де m0 – маса атома; nj – кількість структурних елементів на поверхні наночастинки; Pj – ймовірність відриву атома структурного елемента за одиницю часу, то для кінетичного коефіцієнта справджується співвідношення
|
(1.7) |
Тут Pj,0 і Pj,0 – частоти приєднання і відриву структурних елементів при = 1.
Теоретичний аналіз загальних кінетичних моделей наносистем утруднений через низку причин. Розрахунок стану наносистемами в певний момент часу охоплює розрахунок двох складових: внутрішньої Zi(m, ) і зовнішньої ( ,). Детальний опис множини {Zi} передбачає необхідність введення параметрів внутрішньоатомного розподілу електронної густини, які можна отримати розв’язком відповідного рівняння Шрьодінгера. Однак, розв’язок подібного рівняння з задовільною точністю для ансамблю, який містить велику множину електронів і ядер, неможливий. Розрахунок функції зовнішньої складової ( ,), який можна провести методами статистичної термодинаміки, теж пов’язаний зі значними труднощами і вимагає введення низки спрощуючих припущень. Проблема особливо ускладнюється при спробі описати зміну стану наносистеми у часі.
На жаль, доводиться констатувати, що загальна теорія наносистем ще далека до завершення. Аналіз величезного масиву експериментальних даних проводять у рамках моделей, які описують поодинокі нанотіла у середовищі. Сюди належать моделі укрупнення, розчинення, переміщення у просторі, зміни форми, сорбційні, “заліковування” дефектів кристалічної ґратки, електричної та механічної поляризації тощо. При створенні загальних і часткових моделей наносистем було використано принцип розмірних ефектів двох типів: власного (або внутрішнього) і зовнішнього. Внутрішній розмірний ефект зумовлений поверхневими, об’ємними та хімічними властивостями частинок. Зовнішній розмірний ефект, по суті, є розмірнозалежним відкликом на дію зовнішніх сил, незалежних від внутрішнього ефекту [2]. Розміри наночастинок суттєво впливають на магнітні, електричні, оптичні властивості наносистем. Наприклад, залежність енергетичних властивостей сферичних наночастинок від їхнього розміру можна виразити співвідношенням
|
(1.8) |
де r – радіус частинки; , , – деякі константи. Перший член у співвідношенні (1.8) виражає об’ємну енергію, другий – поверхневу, третій характеризує поверхневий натяг.