
- •Нутрициологические, микробиологические, генетические и биохимические основы разработки и производства продуктов с пробиотиками
- •Предисловие
- •Введение
- •1 Нутрициология и нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов
- •1.1 Происхождение «нутрициологии» и ее связь с другими науками. Диетология и нутрициология
- •1.2 Нутрициология и нутрициологическая химия элементов среди других наук о питании
- •1.3 Нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов
- •1.4 Современные представления о нормофлоре как базовый вектор выбора пробиотических культур для пфп
- •1.4.1 Зависимость пробиотического эффекта от конкретного пробиотического штамма
- •1.4.2 Функциональная нутрициология антибиотических свойств пробиотиков
- •1.5 Бактериофаги и бактериоцины
- •1.5.1 Таксономия бактериофагов молочнокислых микроорганизмов
- •1.5.2 Современная классификация бактериоцинов пробиотиков
- •1.6 Функциональная нутрициология веществ, обладающих пребиотической активностью
- •1.6.1 Лактоза и лактозопроизводные с пребиотическими и лечебными свойствами
- •1.7 Пробиотики на основе аллохтонных микроорганизмов
- •1.7.1 Распространение аэробных спорообразующих бактерий
- •1.7.2 Краткая характеристика аллохтонных микроорганизмов
- •1.7.3. Фармакологические аспекты применения биоэнтеросептиков
- •1.7.4 Перспективы использования аллохтонных микроорганизмов для разработки пфп
- •2 Селектируемые производственно-ценные свойства культур для ферментированных функциональных молочных продуктов
- •2.1 Особенности генетической селекции молочнокислых микроорганизмов
- •2.2 Использование маркеров антибиотикоустойчивости: за и против
- •2.3 Рекомбинация факторов фагоустойчивости, антибиотикоустойчивости и бактериоциногении
- •3 Функциональная биохимия отдельных нутриционных элементов
- •3.1 Кальций
- •3.2 Железо
- •3.3 Цинк
- •3.5 Медь
- •3.6 Марганец
- •3.7 Селен
- •3.8 Хром
- •3.9 Молибден
- •3.10 Кобальт
- •4 Влияние тяжелых металлов на развитие микроорганизмов закваски и способы детоксикации
- •4.1 Сорбент гидролизный лигнин и его влияние на процесс сквашивания кисломолочных пфп
- •Список литературных источников
- •Глоссарий
- •1 Нутрициология и нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов 7
- •2 Селектируемые производственно-ценные свойства культур для ферментированных функциональных молочных продуктов 122
- •3 Функциональная биохимия отдельных нутриционных элементов 146
- •4 Влияние тяжелых металлов на развитие микроорганизмов закваски и способы детоксикации 157
3.5 Медь
Общее количество меди в организме человека составляет примерно 100–150 мг. Интенсивность всасывания зависит от вида продуктов. Соли меди с аминокислотами и жирными кислотами всасываются лучше, чем соли минеральных кислот. Транспортируется медь белками крови, в основном альбуминами. Депонируется в печени, оттуда поступает в другие органы и ткани.
Избыток меди выделяется с желчью через кишечник, а также почками, кожей, слизистыми оболочками дыхательного аппарата.
Преимущественное большинство общего количества меди сыворотки крови – до 98% находится в составе церулоплазмина – медьсодержащего гликопротеина [45]. Церулоплазмин, известный иначе как ферроксидаза, окисляет поступающее в кровь железо.
Затем ион Fe3+ связывается с трансферрином и в таком виде доставляется в клетки тканей. Таким образом, медь в составе церулоплазмина участвует в кроветворении и необходима для процессов образования гемоглобина. В этом смысле медь не подлежит замене другими элементами. Именно участием меди в процессах кроветворения объясняется резкое повышение ее уровня в организме при беременности.
Также роль меди доказана в ряде других окислительно-вос-становительных процессов. Например, церулоплазмин обладает слабой каталитической активностью, окисляя полиамины, полифенолы и аскорбиновую кислоту.
Катион меди есть в составе окислительно-восстановительного фермента цитохромоксидазы, которая непосредственно активирует кислород.
Медь была обнаружена в составе некоторых аминооксидаз. Снижение активности этих ферментов в тканях может приводить к дефектам эластина, соединительной ткани сосудов и синтеза скелетного коллагена.
3.6 Марганец
Содержание марганца в организме составляет около 20 мг. Функции марганца довольно разнообразны. Он усиливает процессы роста, кроветворения, биосинтез нуклеиновых кислот, белков, холестерина, антител. Необходим марганец для ферментативного катализа.
Активирующее действие Mn2+ открыл в 1897 году Т. Бертран, изучая свойства лактазы, отщепляющей нередуцирующие концевые остатки в β-галактозидах. Также марганец активирует глюкокиназу, гексокиназу, фосфатазы и ряд реакций гликолиза и цикла трикарбоновых кислот.
Марганец является составной частью некоторых металлоэнзимов, таких как аргиназа, глутамилтрансфераза, дипептидазы, изоцитратдегидрогеназа, декарбоксилаза и др. Входит в состав митохондриальной супероксиддисмутазы, пируваткарбоксилазы, аргиназы. Является активатором большого количества ферментов, например, аденилилциклазы, глутаминсинтетазы, катехол-О-метилтрансферазы, РНК-полимеразы и др. Эти ферменты включаются в метаболизм аминокислот, углеводов, катехоламинов. Известно, что Mn2+ активирует ревертазу (обратную транскриптазу) онковирусов, причем в большей степени, чем Mg2+ [471].
Марганец необходим для синтеза холестерина и нуклеотидов. Участвует в синтезе гликопротеинов, протеогликанов, ганглиозидов, тем самым способствует образованию костной и соединительной ткани. Важен для мозга. В 30% случаев у детей со склонностью к судорогам Mn в крови понижен. Это характерно и для взрослых, страдающих эпилепсией.
Регуляторное действие марганца проявляется на уровне гормонов передней доли гипофиза, андрогенов и инсулина. Поэтому недостаточное потребление сопровождается замедлением роста, нарушениями в репродуктивной системе, повышенной хрупкостью костной ткани, нарушениями углеводного и липидного обмена.
Дефицит в первую очередь отражается на формировании скелета. При недостатке марганца нарушаются процессы окостенения во всем скелете, трубчатые кости утолщаются и укорачиваются, суставы деформируются.