
- •Нутрициологические, микробиологические, генетические и биохимические основы разработки и производства продуктов с пробиотиками
- •Предисловие
- •Введение
- •1 Нутрициология и нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов
- •1.1 Происхождение «нутрициологии» и ее связь с другими науками. Диетология и нутрициология
- •1.2 Нутрициология и нутрициологическая химия элементов среди других наук о питании
- •1.3 Нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов
- •1.4 Современные представления о нормофлоре как базовый вектор выбора пробиотических культур для пфп
- •1.4.1 Зависимость пробиотического эффекта от конкретного пробиотического штамма
- •1.4.2 Функциональная нутрициология антибиотических свойств пробиотиков
- •1.5 Бактериофаги и бактериоцины
- •1.5.1 Таксономия бактериофагов молочнокислых микроорганизмов
- •1.5.2 Современная классификация бактериоцинов пробиотиков
- •1.6 Функциональная нутрициология веществ, обладающих пребиотической активностью
- •1.6.1 Лактоза и лактозопроизводные с пребиотическими и лечебными свойствами
- •1.7 Пробиотики на основе аллохтонных микроорганизмов
- •1.7.1 Распространение аэробных спорообразующих бактерий
- •1.7.2 Краткая характеристика аллохтонных микроорганизмов
- •1.7.3. Фармакологические аспекты применения биоэнтеросептиков
- •1.7.4 Перспективы использования аллохтонных микроорганизмов для разработки пфп
- •2 Селектируемые производственно-ценные свойства культур для ферментированных функциональных молочных продуктов
- •2.1 Особенности генетической селекции молочнокислых микроорганизмов
- •2.2 Использование маркеров антибиотикоустойчивости: за и против
- •2.3 Рекомбинация факторов фагоустойчивости, антибиотикоустойчивости и бактериоциногении
- •3 Функциональная биохимия отдельных нутриционных элементов
- •3.1 Кальций
- •3.2 Железо
- •3.3 Цинк
- •3.5 Медь
- •3.6 Марганец
- •3.7 Селен
- •3.8 Хром
- •3.9 Молибден
- •3.10 Кобальт
- •4 Влияние тяжелых металлов на развитие микроорганизмов закваски и способы детоксикации
- •4.1 Сорбент гидролизный лигнин и его влияние на процесс сквашивания кисломолочных пфп
- •Список литературных источников
- •Глоссарий
- •1 Нутрициология и нутрициологическое значение молочнокислой заквасочной микрофлоры в производстве ферментированных функциональных молочных продуктов 7
- •2 Селектируемые производственно-ценные свойства культур для ферментированных функциональных молочных продуктов 122
- •3 Функциональная биохимия отдельных нутриционных элементов 146
- •4 Влияние тяжелых металлов на развитие микроорганизмов закваски и способы детоксикации 157
1.5.2 Современная классификация бактериоцинов пробиотиков
Называют бактериоцины, как правило, по виду микроорганизма, его продуцирующего, например: болгарская палочка – булгарицин, ацидофильная палочка – ацидоцин и т.д. (табл. 1.10).
Таблица 1.10 – Бактериоцины, образуемые бактериями, входящими в состав различных БП и ПФП [167; 534]
|
Название |
Продуцент |
1 |
Амиловорин 471 |
Lactobacillus amylovorus 471119 |
2 |
Ацидоцин В |
Lactobacillus acidophilus |
3 |
Лактоцины B, F, G, M |
Lactobacillus acidophilus |
4 |
Булгарицин |
Lactobacillus bulgaricus |
5 |
Баварицин МN |
Lactobacillus bavaricus MN |
6 |
Бактериоцин |
Streptococcus salivarius subsp. Thermophilus |
7 |
Саливарцин А |
Streptococcus salivarius subsp. Thermophilus |
8 |
Бактериоцин N5 |
Bifidobacterium sp. |
9 |
Вариацин |
Lactococcus lactis sp. Lactis |
10 |
Диацетин В-1 |
Lactococcus lactis sp diacetylactis |
11 |
Kазеицин |
Lactobacillus casei |
12 |
Kурвацин FS47 |
Lactobacillus curvatus FS47 |
13 |
Kурвацин А |
Lactobacillus curvatus LTH1174 |
14 |
Лактицин 3147 |
Lactococcus lactis 3147 |
15 |
Лактицин 481 |
Lactococcus lactis |
16 |
Лактококцин 140 |
Lactococcus lactis 140 |
17 |
Лактококцин В и G |
Lactococcus lactis |
18 |
Лактоцин S |
Lactobacillus sake L 45 |
19 |
Липоцин М18 |
Brevibacterium linens M18 |
20 |
Низин |
Lactococcus lactis sp lactis |
21 |
Низин Z |
Lactococcus lactis sp lactis 10-1 |
22 |
Лактострепцин |
Lactococcus spp. Lactis |
23 |
Диплоцин |
Lactococcus lactis sp cremoris |
Окончание таблицы 1.10 |
||
24 |
Плантарицин А и С |
Lactobacillus plantarum |
25 |
Плантацин 154 |
Lactobacillus plantarum LTF154 |
26 |
Сакацин 674 |
Lactobacillus sake Lb674 |
27 |
Гельветицин |
Lactobacillus helveticus |
28 |
Раутерин |
Lactobacillus reuteri |
29 |
Лактобревин |
Lactobacillus brevis |
30 |
Саливаримицин А |
Lactococcus lactis sp lactis |
24 |
Термофилин А |
Streptococcus thermophilus ST134 |
25 |
Энтерококцин |
Enterococcus faecium |
26 |
Энтероцин А |
Enterococcus faecium |
27 |
Энтероцин 4 |
Enterococcus faecalis INIA4 |
По спектру антибактериальной активности бактериоцины делят на две группы. Представители первой группы характеризуются узким спектром антибактериального действия: вызывают гибель организмов, близких к организму-продуценту.
В эту группу входят лактоцин В и F-27, амиловорин, педиоцин N5P, теpмофилин А, курвацин А, амиловорин L471, энтерококцин.
Бактериоцины, относящиеся ко второй группе, ингибируют рост многих видов грамположительных, иногда и грамотрицательных микроорганизмов, в том числе Listeria monocytogenes, Clostridium botulinum, Clostridium sporogenes, Staphylococcus aureus, Pediococcus acidilactici, Bacillus spp., Enterococcus faecalis и др. К бактериоцинам второй группы относятся: педиоцин А, ацидоцин В, диацетин В-1, курвацин FS47, лактицин 3147, плантарицин С, энтерококцины, саливарцин, низин, саркацин 674, мутацин.
Лантибиотики – это бактериоцины, в состав которых входят такие редкие тиоэфирные аминокислоты, как лантионин и метиллантионин. Эти вещества имеют также широкий антимикробный спектр действия.
По механизму биосинтеза лантибиотики можно разделить на две группы: низины и субтилин, продуцируемый B.subtilis, которые синтезируются на рибосомах, и лантибиотики, биосинтез которых происходит не на рибосомах. Механизм биологического действия лантибиотиков, в том числе низина, связан с нарушением проницаемости бактериальных цитоплазматических мембран.
Нарушение мембранного потенциала инициируется образованием пор, через которые проходят молекулы лантибиотиков [167, 546].
К лантибиотикам, образуемым молочнокислыми бактериями, относятся: лактицин 481, стрептококцин АFF22, саливаримицин А, вариацин, лактицин 3147, бактериоцин из Streptococcus salivarius SBT1277, низин [604].
Хорошо изучены бактериоцины у бифидобактерий. Эти соединения – бифидин и бифилонг, достаточно стабильны при температуре 100°С, активны при кислой рН и проявляют антимикробную активность в отношении многих видов энтеробактерий, вибрионов, стрептококков и стафилококков [70, 645].
Одним из самых мощных антимикробных средств, активным в отношении многих грамположительных и грамотрицательных бактерий, а также дрожжей, плесеней и простейших [534], является бактериоцин реутерин, который продуцируют Lactobacillus reuteri и некоторые лактококки.
Реутерин синтезируется in vitro при рН, температуре и анаэробных условиях, близких к условиям желудочно-кишечного тракта. Первоначально Lactobacillus reuteri были выделены из грудного молока. Они представляют собой наиболее распространенный вид лактобактерий, которые обнаруживаются в желудочно-кишечном тракте человека и животных [618, 703].
Как и другие лактобактерии, L. reuteri образуют конечные продукты метаболизма с кислотными свойствами (молочную и уксусные кислоты), которые обладают выраженной противомикробной активностью [534].
Известно, что L. reuteri эффективно колонизируют кишечник человека после употребления молочных продуктов; в настоящее время подобные продукты широко продаются в Швеции.
Исследования на животных и людях показали, что определенные штаммы Lb. reuteri, используемые в качестве пробиотиков, могут обеспечить защиту от вредного воздействия некоторых микробиологических, химических и физических стресс-факторов, снизить уровень холестерина; модулировать иммунный ответ, а также улучшить развитие ткани подвздошной кишки [553, 651, 702, 684, 698, 704].
In vivo, синтез активного реутерина может происходить в толстой кишке в процессе метаболизма Lb. reuteri, при наличии достаточного количества глицерина, который является продуктом микробиологического брожения в просвете кишечника, переваривания жиров в просвете кишечника, отторжения слизи и десквамированных эпителиальных клеток и кишечного клиренса эндогенного глицерина плазмы.
Реутерин является водорастворимым, эффективным в широком диапазоне рН, устойчивым к протеолитическим и липолитическим ферментам и поэтому изучен как пищевой консервант или вспомогательное терапевтическое пробиотическое средство [702].
Было предположено, что реутерин может ингибировать активность бактериальной рибонуклеотидной редуктазы, фермента, катализирующего первый этап синтеза ДНК, путем конкуренции (HPA-димер) с рибонуклеотидами за места связывания или с помощью реакции (3-HPA) с нестабильными сульфгидрильными группами рибонуклеотидной редуктазы или с тиоредоксином, необходимым для ферментативной активности.
Ингибированием превращения рибонуклеотидов в дезоксирибонуклеотиды объясняют широкий спектр действия реутерина [205, 553, 563].