
- •1.1 Предмет курсу. Види інформації. Теорема дискретизації
- •1.2 Базові поняття теорії інформації
- •1.3 Способи вимірювання інформації
- •1. 4 Ентропія джерела. Властивості кількості інформації та ентропії
- •Розв'язання
- •Розв'язання
- •2.1 Умовна ентропія
- •2.2 Модель системи передачі інформації
- •2.3 Види умовної ентропії
- •2.4 Ентропія об'єднання двох джерел інформації
- •2.5 Продуктивність дискретного джерела інформації. Швидкість передачі інформації
- •2.6 Інформаційні втрати при передачі інформації по дискретному каналу зв'язку
- •2.7 Пропускна здатність дискретного каналу. Основна теорема про кодування дискретного джерела
- •Розв'язання
- •Розв'язання
- •3.1 Способи задання кодів. Статистичне кодування
- •3.2 Елементи теорії префіксних множин
- •3.3 Оптимальні методи статистичного стиснення інформації Шеннона-Фано і Хаффмена
- •Розв'язання
- •I Метод Шеннона-Фано:
- •II Метод Хаффмена:
- •4.1 Теоретичні границі стиснення інформації
- •4.2 Метод блокування повідомлення
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Метод Шеннона-Фано
- •Арифметичний метод
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
Частина I Основи теорії інформації та кодування |
Розділ 1 ОСНОВНІ ПОЛОЖЕННЯ ТЕОРІЇ ІНФОРМАЦІЇ
1.1 Предмет курсу. Види інформації. Теорема дискретизації
Теорія інформації - це розділ кібернетики, в якому за допомогою математичних методів вивчаються способи вимірювання інформації та методи її кодування з метою стиснення інформації і надійної передачі каналами зв'язку.
При формальному поданні знань кожному досліджуваному об'єкту ставиться у відповідність числовий код, зв'язки між об'єктами так само подаються кодами. Для переведення неформальних даних у формальний цифровий вигляд використовуються спеціальні таблиці кодування. Найпростіший приклад такої таблиці - ASCII (American Standard Code for Information Interchange), що зіставляє друкованим та керуючим символам числа від 0 до 127.
Інформація може бути двох видів: дискретна (цифрова) і неперервна (аналогова).
Неперервна інформація – це дані, що одержані при неперервному за часом процесі змінювання деякої випадкової величини і описуються неперервними (аналоговими) функціями.
Дискретна інформація – це цифрові дані, одержані у результаті квантування (дискретизації) неперервної величини за часом, рівнем або тим і іншим одночасно (рис.1.1). Дискретну інформацію зберігати і обробляти набагато простіше, оскільки вона являє собою послідовність чисел. У двійковій системі числення дискретна інформація являє собою послідовність 0 та 1.
За найменшу одиницю ємності цифрової інформації беруть біт (bit, binary digit) – одну позицію для двійкової цифри. Складені одиниці: 1 Кб = 210 = 1024 б; 1 Мб = 220 ≈ 106 б; 1 Гб = 230 ≈ 109 б; 1 Тб = 240 ≈ 1012 б; 1 Пб = 250 ≈ 1015 б.
Для переведення неперервної інформації в дискретну і навпаки використовуються спеціальні пристрої модуляції/демодуляції - модеми. Швидкість передачі інформації вимірюється в кількості переданих за одну секунду бітів – бодах (baud): 1 бод = 1 біт/с (bps).
Пристрій, що реалізовує процес дискретизації неперервного сигналу, називається аналогово-цифровим перетворювачем (АЦП). Частота, з якою АЦП проводить виміри аналогового сигналу і видає його цифрові значення, називається частотою дискретизації. Пристрій, що інтерполює дискретний сигнал у неперервний називається цифро-аналоговим перетворювачем.
Чим вища частота дискретизації, тим точніше переведення неперервної інформації в дискретний сигнал. Проте із зростанням частоти зростає і розмір дискретних даних і, отже, складність їхнього оброблення, передачі і зберігання.
При всіх якісних відмінностях між неперервною і дискретною величинами існує чіткий зв'язок, встановлюваний теоремою дискретизації Шеннона-Котельникова.
Як відомо з відповідного розділу математичного аналізу, будь-яка неперервна функція S(t) може бути розкладеною на скінченному проміжку в ряд Фур’є. Суть цього розкладання полягає в тому, що функція подається у вигляді суми ряду синусоїд з різними амплітудами і фазами, і з кратними частотами. Коефіцієнти (амплітуди) при синусоїдах називаються спектром функції. У гладких функцій спектр швидко спадає (із зростанням номера коефіцієнти швидко прямують до нуля). Для швидко змінюваних функцій спектр спадає поволі, оскільки в сумі гармонічного ряду таких функцій переважають синусоїди з високими частотами.
Вважається, що сигнал має обмежений спектр, якщо після певного номера всі коефіцієнти спектру прямують до нуля. Іншими словами, на заданому проміжку часу сигнал подається у вигляді скінченної суми ряду Фур’є. В цьому випадку говорять, що спектр сигналу знаходиться нижче за граничну частоту fм, де fм - частота синусоїди при останньому ненульовому коефіцієнті.
Теорема дискретизації формулюється так:
Неперервна
інформація S(t)
з обмеженим спектром, тобто така, що має
в своєму спектрі складові з частотами,
що не перевищують деяку максимальну
частоту спектру fм,,
повністю відтворюється послідовністю
відліків S(ti),
узятих в дискретні моменти часу з
інтервалом
.