
- •1.Кристаллозаготовка
- •1.1 Способы ориентации монокристалла по кристаллографическим плоскостям
- •1.2 Способы резки слитка на пластины
- •Среди основных способов резки слитков на пластины следующие:
- •1.3 Структура нарушенного слоя после механической обработки
- •1.4 Виды шлифовки пластин
- •Скругление краев пластин
- •1.4 Виды полировки пластин
- •1.6 Химико-механическая полировка пластин
- •1.7 Виды разделения пластины на кристаллы
- •1.8 Контрольные точки после финишной полировки
- •2. Химподготовка пластин
- •2.1 Источники загрязнения поверхности и классификация загрязнений
- •2.2 Деионизованная вода. Получение. Основные характеристики технологической деионизованной воды
- •2.3 Гидромеханическая отмывка
- •2.4 Обезжиривание пластин. Реактивы. Способы обезжиривания
- •2.5 Полирующее травление. Задачи травления. Принцип кислотного травления. Основные компоненты кислотного травителя
- •2.6 Щелочное травление кремния. Состав щелочного травителя
- •3.2 Структура установки газофазной эпитаксии кремния
- •3.3 Кинетика роста эпитаксиальной пленки
- •3.4 Процессы массопереноса в эпитаксиальном реакторе. Число Рейнольца. Толщина пограничного газового слоя
- •3.5 Основные типы газофазных эпитаксиальных реакторов
- •3.6 Легирование и автолегирование эпитаксиального слоя.
- •3.7 Основные дефекты эпитаксиальных плёнок и пути их снижения
- •3.8 Молекулярно – лучевая эпитаксия
Среди основных способов резки слитков на пластины следующие:
Резка диском с алмазной внутренней кромкой. Режущим инструментом является металлический диск толщиной 0,1-0,15 мм с внутренней режущей кромкой, армированный искусственными или природными алмазами. Чаще всего, такая установка дисковой резки применяется для R&D и лабораторных исследований.
Резка проволокой с применением абразива. Резка слитка на пластины происходит в процессе перемотки проволоки (как правило, изготовленной из вольфрама, стали, никеля или нихрома) диаметром 0,1-0,15 мм с одного вала на другой. При этом над слитком по все длине натянуты параллельные нити проволоки, которые прорезают слиток снизу вверх или сверху вниз, в зависимости от используемого оборудования. На проволоку непрерывно подается суспензия с частицами абразива на основе алмазного порошка. Метод широко используется в полупроводниковой промышленности. К недостаткам метода относятся: низкая скорость резки, высокая стоимость алмазного порошка, загрязнение пластин суспензией, сложности с использованием для малых объемов производства (высокая стоимость эксплуатации оборудования при малой загрузке).
Резка алмазной проволокой. Процесс резки алмазной проволокой является наиболее современным и постепенно приходит на смену процессу резки суспензией. Процесс резки полностью аналогичен резке суспензией, однако в данном случае сама проволока покрыта алмазным порошком, а вместо суспензии используется жидкость на основе воды. Благодаря алмазной проволоке, скорость резки может быть увеличена в 5 и более раз, по сравнению с резкой суспензией (в зависимости от материала и размера слитка). Используемый водный агент не загрязняет подложки в процессе резки. Алмазную проволоку возможно останавливать в процессе резки и возобновлять процесс без порчи слитка, как это происходит в случае с резкой суспензией. Возможность многократного использования алмазной проволоки в итоге позволяет сделать рез слитка дешевле, чем в случае с суспензией.
Диск с внешней режущей алмазной кромкой.
1.3 Структура нарушенного слоя после механической обработки
После механических операций на поверхности полупроводника остается нарушенный слой, который существенным образом влияет как на дальнейшую технологическую обработку (травление, окисление), так и в конечном счете на параметры полупроводниковых приборов, особенно с мелкими (меньше 1 мкм) активными слоями. Поэтому контроль структуры нарушенного слоя и способы его удаления представляют важную задачу современной планарной технологии.
Структуру нарушенного слоя полупроводниковой пластины после резки и шлифовки условно можно представить в виде четырех последовательных областей (рис. 1.3): верхняя область - микрорельеф, под ней расположена область микротрещин, далее область, содержащая петли и скопления дислокаций, затем следует слой кремния, где число дислокации повышено по сравнению с остальным объемом полупроводника. В структурном отношении области микрорельефа и микротрещин представляют собой аморфные или мелкокристаллические состояния кремния. Области скопления и повышенной плотности дислокаций имеют монокристаллическую структуру. В нарушенном слое, кроме структурных, возможно образование и концентрационных неоднородностей, которые связаны с сегрегацией примесей на дислокациях, что может изменять электрофизические свойства материала, влияя на электрические параметры элементов микросхем.