
- •1.Кристаллозаготовка
- •1.1 Способы ориентации монокристалла по кристаллографическим плоскостям
- •1.2 Способы резки слитка на пластины
- •Среди основных способов резки слитков на пластины следующие:
- •1.3 Структура нарушенного слоя после механической обработки
- •1.4 Виды шлифовки пластин
- •Скругление краев пластин
- •1.4 Виды полировки пластин
- •1.6 Химико-механическая полировка пластин
- •1.7 Виды разделения пластины на кристаллы
- •1.8 Контрольные точки после финишной полировки
- •2. Химподготовка пластин
- •2.1 Источники загрязнения поверхности и классификация загрязнений
- •2.2 Деионизованная вода. Получение. Основные характеристики технологической деионизованной воды
- •2.3 Гидромеханическая отмывка
- •2.4 Обезжиривание пластин. Реактивы. Способы обезжиривания
- •2.5 Полирующее травление. Задачи травления. Принцип кислотного травления. Основные компоненты кислотного травителя
- •2.6 Щелочное травление кремния. Состав щелочного травителя
- •3.2 Структура установки газофазной эпитаксии кремния
- •3.3 Кинетика роста эпитаксиальной пленки
- •3.4 Процессы массопереноса в эпитаксиальном реакторе. Число Рейнольца. Толщина пограничного газового слоя
- •3.5 Основные типы газофазных эпитаксиальных реакторов
- •3.6 Легирование и автолегирование эпитаксиального слоя.
- •3.7 Основные дефекты эпитаксиальных плёнок и пути их снижения
- •3.8 Молекулярно – лучевая эпитаксия
- •1.Окисление кремния в сухом кислороде. Кинетика. Качество пленок
- •2. Окисление кремния в цикле сухой-влажный-сухой кислород.
- •3. Пирогенное окисление кремния
- •4. Модель окисления Дила- Гроува
- •5. Окисление под давлением
- •6. Контроль параметров и качества окисных пленок.
- •1. Назначение термодиффузии в технологии и основные механизмы термодиффузии в кремнии
- •2. Основные законы термодиффузии.
- •3. Диффузия из неограниченного источника (загонка).
- •4. Диффузия из ограниченного источника (разгонка)
- •5. Основные источники n- и р- примесей для кремния
- •6. Технологические методы проведения диффузии.
- •7. Диффузия из твердого планарного источника
- •8. Контроль толщины диффузионного слоя
- •9. Контроль концентрации легирующей примеси в диффузионном слое.
- •1. Эффект каналирования
- •2. Атомное и электронное торможение имплантированных ионов.Боковое рассеяние.
- •4. Принцип работы масс сепаратора при ионном легировании.
- •5. Источник ионов установки ионного легировании. Конструкция и принцип работы
- •6. Измерение ионного тока. Ячейка Фарадея
- •6. Металлизация
- •Назначение металлизации в ис. Контактное сопротивление металл- полупроводник.
- •3.Механические вращательные насосы. Принцип работы. Применимость.
- •4.Паромасляный (диффузионный) насос. Принцип работы. Применимость.
- •5.Насос Рутса (двухроторный). Принцип работы. Применимость.
- •6.Турбомолекулярный насос. Принцип работы. Применимость.
- •7.Геттерный и криосорбционный насосы. Принцип работы. Применимость.
- •Криосорбционные насосы.
- •8.Термопарный и ионизационный вакуумметры. Принцип работы. Применимость.
- •9.Электронно- лучевое испарение. Принцип. Применимость.
- •10.Импульсное испарение тугоплавких металлов. Основные методы.
- •11.Магнетронное распылительное устройство.
- •12.Ионно- лучевой источник нанесения- травления (типа Кауфман). Принцип, конструкция, применимость.
- •13.Контроль толщины пленок в процессе нанесения (по «свидетелю», кварцевый).
- •14.Электромиграция в металлических пленках. Технологические пути снижения электромиграции.
- •15.Создание омических контактов. Технологические пути повышения омичности контакта.
- •7. Микролитография.
- •Укрупненная схема техпроцесса фотолитографии.
- •2.Химподготовка химически активных технологических слоев.
- •3.Химподготовка химически неактивных технологических слоев.
- •4.Нанесение резиста на технологический слой. Основные методы.
- •5.Нанесение сверхтонкого слоя фоторезиста (Ленгмюровские пленки).
- •Травление кремния в щелочных растворах и кислотных травителях.
- •Использование травления кремния для выявления дефектов пластин.
- •Химическое травления диоксида кремния.
- •Электрохимическое травление кремния.
- •Удаление фоторезиста химическим методом и в кислородной плазме.
- •Взрывная фотолитография.
- •Проекционная фотолитография. Используемые варианты.
- •Рентгеновская литография. Техпроцесс изготовления рентгеновского шаблона.
- •Основные типы плазменных реакторов.
Травление кремния в щелочных растворах и кислотных травителях.
равление кремния. Химическая инертность кремния объясняется наличием на исходной пластине оксидной пленки, которая растворима только в водных растворах щелочей и плавиковой кислотьи Поэтому для химической обработки кремния используют два вида травителей: кислотный и щелочный. В качестве кислотных травителей применяют различные смеси азотной и плавиковой кислот. Максимальная скорость травления кремния достигается при соотношении HN03: HF= 1 : 4,5 в молярных долях. Растворение кремния в этом составе травителя происходит по следующей реакции: 3Si-r-+ 4HN03+18HF = 3H2SiF6 + 4NO + 8H20.
За счет разницы в концентрации травителя у выступов и впадин, которые имеют место на поверхности кремния, происходит более быстрое растворение выступов. Это приводит к сглаживанию поверхности полупроводниковой подложки.
В качестве щелочных травителей используют водные (10—20%) растворы КОН и NaOH. Травление кремния в щелочных составах проводят при температуре 90—100°С. Обработка в щелочных тра-вителях не дает желаемой зеркальной поверхности кремния, поэтому данный вид травителя в качестве полирующего не нашел широкого практического применения в промышленности. Однако щелочный травитель часто используют для так называемого анизотропного травления, т. е. в тех случаях, когда требуется вытравить на поверхности подложки лунку определенной формы. Особый интерес представляют лунки V-образной формы, широко используемые для. изоляции отдельных областей ИМС.
Использование травления кремния для выявления дефектов пластин.
Движение пластины по маршруту увеличивает плотность дислокации, дефектов упаковки, дефектов роста, ямок, холмиков и т.д
Фигуры травления позволяют судить об ориентации монокристалла, монокристалличности или поликристаличности структуры
Каждой кристаллографической ориентации соответствует своя форма фигуры травления
Химическое травления диоксида кремния.
Для изготовления интегральных микросхем в ряде случаев необходимо формирование нужного рисунка в слоях окисла или нитрида кремния. Рисунок может быть получен с помощью фотолитографии, когда защитной маской при травлении служит фоторезист. Для травления окисла кремния можно использовать растворы различной концентрации плавиковой кислоты в воде, а также другие травители, содержащие плавиковую кислоту. Травление идет согласно реакции:
SiO2 + 4HF = SiF4 + 2H2O.
При этом выделяются пузырьки газообразногоSiF4, которые вызывают отслаивание фоторезиста при фотолитографии и увеличивают растравливание окисла. Поэтому при травлении окисла кремния с использованием фоторезистивной маски применяется буферный травитель, в который, кроме плавиковой кислоты, добавляется фтористый аммонийNH4F. При этом концентрация ионов фтора увеличивается и газообразное соединениеSiF4 переводится в устойчивоеSiF62-:
SiF4+2F- → SiF62- .
Состав буферного травителя таков: 103 см3 49%-ныйHF, 100 см NH 4 F (450 г NH4F на 650 см H2O). Скорость травления термически выращенного SiO2 в буферном травителе 20 нм/мин. Скорость травления окисных пленок, полученных пиролитическим осаждением или какими-либо другими методами, выше, чем скорость травления термически выращенных. Наличие примесей также влияет на скорость травления окисла кремния. Стекла, содержащие бор (боросиликатные - БСС) и фосфор (фосфоросиликатные - ФСС), травятся примерно вдвое быстрее, чем окисел кремния.
Для травления нитрида кремния может использоваться плавиковая кислота. Скорость травления Si3N4 в концентрированной плавиковой кислоте может составлять 7-10 нм/мин при различных способах создания слоев нитрида кремния. Для улучшения равномерности травления может использоваться травитель с добавлением NH4F (45 г HF, 200 г NH4F, 300 г H2O) или HF (49%-ный): NH4F (40%-ный) = 1:7. Скорость травления при этом несколько снижается.
В технологии ИМС часто возникает необходимость в травлении двойного слоя: Si3 N4 на SiO2 или SiO2 на Si3 N4. Поскольку в травителях, содержащих плавиковую кислоту, скорости травления окисла кремния существенно выше скорости травления нитрида кремния, при травлении Si3 N4 окисел будет
разрушаться. Травителем для Si3N4, не воздействующим на окисел, является фосфорная кислота H3PO4. Травление Si3N4 в фосфорной кислоте идет интенсивно со скоростью 1 - 20 нм/мин при температуре 150 - 200°С, при этом из раствора интенсивно испаряется вода и травитель обогащается P2O5 . Скорость травления нитрида кремния падает. С увеличением содержания P2O5 начинает травиться окисел кремния. При температуре 180 °С скорость травления Si3N4 в водном 90%-ном растворе H3PO4 равна 10 нм/мин, а скорость травления SiO2 на порядок величины меньше.