- •1.Кристаллозаготовка
- •1.1 Способы ориентации монокристалла по кристаллографическим плоскостям
- •1.2 Способы резки слитка на пластины
- •Среди основных способов резки слитков на пластины следующие:
- •1.3 Структура нарушенного слоя после механической обработки
- •1.4 Виды шлифовки пластин
- •Скругление краев пластин
- •1.4 Виды полировки пластин
- •1.6 Химико-механическая полировка пластин
- •1.7 Виды разделения пластины на кристаллы
- •1.8 Контрольные точки после финишной полировки
- •2. Химподготовка пластин
- •2.1 Источники загрязнения поверхности и классификация загрязнений
- •2.2 Деионизованная вода. Получение. Основные характеристики технологической деионизованной воды
- •2.3 Гидромеханическая отмывка
- •2.4 Обезжиривание пластин. Реактивы. Способы обезжиривания
- •2.5 Полирующее травление. Задачи травления. Принцип кислотного травления. Основные компоненты кислотного травителя
- •2.6 Щелочное травление кремния. Состав щелочного травителя
- •3.2 Структура установки газофазной эпитаксии кремния
- •3.3 Кинетика роста эпитаксиальной пленки
- •3.4 Процессы массопереноса в эпитаксиальном реакторе. Число Рейнольца. Толщина пограничного газового слоя
- •3.5 Основные типы газофазных эпитаксиальных реакторов
- •3.6 Легирование и автолегирование эпитаксиального слоя.
- •3.7 Основные дефекты эпитаксиальных плёнок и пути их снижения
- •3.8 Молекулярно – лучевая эпитаксия
- •1.Окисление кремния в сухом кислороде. Кинетика. Качество пленок
- •2. Окисление кремния в цикле сухой-влажный-сухой кислород.
- •3. Пирогенное окисление кремния
- •4. Модель окисления Дила- Гроува
- •5. Окисление под давлением
- •6. Контроль параметров и качества окисных пленок.
- •1. Назначение термодиффузии в технологии и основные механизмы термодиффузии в кремнии
- •2. Основные законы термодиффузии.
- •3. Диффузия из неограниченного источника (загонка).
- •4. Диффузия из ограниченного источника (разгонка)
- •5. Основные источники n- и р- примесей для кремния
- •6. Технологические методы проведения диффузии.
- •7. Диффузия из твердого планарного источника
- •8. Контроль толщины диффузионного слоя
- •9. Контроль концентрации легирующей примеси в диффузионном слое.
- •1. Эффект каналирования
- •2. Атомное и электронное торможение имплантированных ионов.Боковое рассеяние.
- •4. Принцип работы масс сепаратора при ионном легировании.
- •5. Источник ионов установки ионного легировании. Конструкция и принцип работы
- •6. Измерение ионного тока. Ячейка Фарадея
- •6. Металлизация
- •Назначение металлизации в ис. Контактное сопротивление металл- полупроводник.
- •3.Механические вращательные насосы. Принцип работы. Применимость.
- •4.Паромасляный (диффузионный) насос. Принцип работы. Применимость.
- •5.Насос Рутса (двухроторный). Принцип работы. Применимость.
- •6.Турбомолекулярный насос. Принцип работы. Применимость.
- •7.Геттерный и криосорбционный насосы. Принцип работы. Применимость.
- •Криосорбционные насосы.
- •8.Термопарный и ионизационный вакуумметры. Принцип работы. Применимость.
- •9.Электронно- лучевое испарение. Принцип. Применимость.
- •10.Импульсное испарение тугоплавких металлов. Основные методы.
- •11.Магнетронное распылительное устройство.
- •12.Ионно- лучевой источник нанесения- травления (типа Кауфман). Принцип, конструкция, применимость.
- •13.Контроль толщины пленок в процессе нанесения (по «свидетелю», кварцевый).
- •14.Электромиграция в металлических пленках. Технологические пути снижения электромиграции.
- •15.Создание омических контактов. Технологические пути повышения омичности контакта.
- •7. Микролитография.
- •Укрупненная схема техпроцесса фотолитографии.
- •2.Химподготовка химически активных технологических слоев.
- •3.Химподготовка химически неактивных технологических слоев.
- •4.Нанесение резиста на технологический слой. Основные методы.
- •5.Нанесение сверхтонкого слоя фоторезиста (Ленгмюровские пленки).
- •Травление кремния в щелочных растворах и кислотных травителях.
- •Использование травления кремния для выявления дефектов пластин.
- •Химическое травления диоксида кремния.
- •Электрохимическое травление кремния.
- •Удаление фоторезиста химическим методом и в кислородной плазме.
- •Взрывная фотолитография.
- •Проекционная фотолитография. Используемые варианты.
- •Рентгеновская литография. Техпроцесс изготовления рентгеновского шаблона.
- •Основные типы плазменных реакторов.
Среди основных способов резки слитков на пластины следующие:
Резка диском с алмазной внутренней кромкой. Режущим инструментом является металлический диск толщиной 0,1-0,15 мм с внутренней режущей кромкой, армированный искусственными или природными алмазами. Чаще всего, такая установка дисковой резки применяется для R&D и лабораторных исследований.
Резка проволокой с применением абразива. Резка слитка на пластины происходит в процессе перемотки проволоки (как правило, изготовленной из вольфрама, стали, никеля или нихрома) диаметром 0,1-0,15 мм с одного вала на другой. При этом над слитком по все длине натянуты параллельные нити проволоки, которые прорезают слиток снизу вверх или сверху вниз, в зависимости от используемого оборудования. На проволоку непрерывно подается суспензия с частицами абразива на основе алмазного порошка. Метод широко используется в полупроводниковой промышленности. К недостаткам метода относятся: низкая скорость резки, высокая стоимость алмазного порошка, загрязнение пластин суспензией, сложности с использованием для малых объемов производства (высокая стоимость эксплуатации оборудования при малой загрузке).
Резка алмазной проволокой. Процесс резки алмазной проволокой является наиболее современным и постепенно приходит на смену процессу резки суспензией. Процесс резки полностью аналогичен резке суспензией, однако в данном случае сама проволока покрыта алмазным порошком, а вместо суспензии используется жидкость на основе воды. Благодаря алмазной проволоке, скорость резки может быть увеличена в 5 и более раз, по сравнению с резкой суспензией (в зависимости от материала и размера слитка). Используемый водный агент не загрязняет подложки в процессе резки. Алмазную проволоку возможно останавливать в процессе резки и возобновлять процесс без порчи слитка, как это происходит в случае с резкой суспензией. Возможность многократного использования алмазной проволоки в итоге позволяет сделать рез слитка дешевле, чем в случае с суспензией.
Диск с внешней режущей алмазной кромкой.
1.3 Структура нарушенного слоя после механической обработки
После механических операций на поверхности полупроводника остается нарушенный слой, который существенным образом влияет как на дальнейшую технологическую обработку (травление, окисление), так и в конечном счете на параметры полупроводниковых приборов, особенно с мелкими (меньше 1 мкм) активными слоями. Поэтому контроль структуры нарушенного слоя и способы его удаления представляют важную задачу современной планарной технологии.
Структуру нарушенного слоя полупроводниковой пластины после резки и шлифовки условно можно представить в виде четырех последовательных областей (рис. 1.3): верхняя область - микрорельеф, под ней расположена область микротрещин, далее область, содержащая петли и скопления дислокаций, затем следует слой кремния, где число дислокации повышено по сравнению с остальным объемом полупроводника. В структурном отношении области микрорельефа и микротрещин представляют собой аморфные или мелкокристаллические состояния кремния. Области скопления и повышенной плотности дислокаций имеют монокристаллическую структуру. В нарушенном слое, кроме структурных, возможно образование и концентрационных неоднородностей, которые связаны с сегрегацией примесей на дислокациях, что может изменять электрофизические свойства материала, влияя на электрические параметры элементов микросхем.
