
- •1.Кристаллозаготовка
- •1.1 Способы ориентации монокристалла по кристаллографическим плоскостям
- •1.2 Способы резки слитка на пластины
- •Среди основных способов резки слитков на пластины следующие:
- •1.3 Структура нарушенного слоя после механической обработки
- •1.4 Виды шлифовки пластин
- •Скругление краев пластин
- •1.4 Виды полировки пластин
- •1.6 Химико-механическая полировка пластин
- •1.7 Виды разделения пластины на кристаллы
- •1.8 Контрольные точки после финишной полировки
- •2. Химподготовка пластин
- •2.1 Источники загрязнения поверхности и классификация загрязнений
- •2.2 Деионизованная вода. Получение. Основные характеристики технологической деионизованной воды
- •2.3 Гидромеханическая отмывка
- •2.4 Обезжиривание пластин. Реактивы. Способы обезжиривания
- •2.5 Полирующее травление. Задачи травления. Принцип кислотного травления. Основные компоненты кислотного травителя
- •2.6 Щелочное травление кремния. Состав щелочного травителя
- •3.2 Структура установки газофазной эпитаксии кремния
- •3.3 Кинетика роста эпитаксиальной пленки
- •3.4 Процессы массопереноса в эпитаксиальном реакторе. Число Рейнольца. Толщина пограничного газового слоя
- •3.5 Основные типы газофазных эпитаксиальных реакторов
- •3.6 Легирование и автолегирование эпитаксиального слоя.
- •3.7 Основные дефекты эпитаксиальных плёнок и пути их снижения
- •3.8 Молекулярно – лучевая эпитаксия
- •1.Окисление кремния в сухом кислороде. Кинетика. Качество пленок
- •2. Окисление кремния в цикле сухой-влажный-сухой кислород.
- •3. Пирогенное окисление кремния
- •4. Модель окисления Дила- Гроува
- •5. Окисление под давлением
- •6. Контроль параметров и качества окисных пленок.
- •1. Назначение термодиффузии в технологии и основные механизмы термодиффузии в кремнии
- •2. Основные законы термодиффузии.
- •3. Диффузия из неограниченного источника (загонка).
- •4. Диффузия из ограниченного источника (разгонка)
- •5. Основные источники n- и р- примесей для кремния
- •6. Технологические методы проведения диффузии.
- •7. Диффузия из твердого планарного источника
- •8. Контроль толщины диффузионного слоя
- •9. Контроль концентрации легирующей примеси в диффузионном слое.
- •1. Эффект каналирования
- •2. Атомное и электронное торможение имплантированных ионов.Боковое рассеяние.
- •4. Принцип работы масс сепаратора при ионном легировании.
- •5. Источник ионов установки ионного легировании. Конструкция и принцип работы
- •6. Измерение ионного тока. Ячейка Фарадея
- •6. Металлизация
- •Назначение металлизации в ис. Контактное сопротивление металл- полупроводник.
- •3.Механические вращательные насосы. Принцип работы. Применимость.
- •4.Паромасляный (диффузионный) насос. Принцип работы. Применимость.
- •5.Насос Рутса (двухроторный). Принцип работы. Применимость.
- •6.Турбомолекулярный насос. Принцип работы. Применимость.
- •7.Геттерный и криосорбционный насосы. Принцип работы. Применимость.
- •Криосорбционные насосы.
- •8.Термопарный и ионизационный вакуумметры. Принцип работы. Применимость.
- •9.Электронно- лучевое испарение. Принцип. Применимость.
- •10.Импульсное испарение тугоплавких металлов. Основные методы.
- •11.Магнетронное распылительное устройство.
- •12.Ионно- лучевой источник нанесения- травления (типа Кауфман). Принцип, конструкция, применимость.
- •13.Контроль толщины пленок в процессе нанесения (по «свидетелю», кварцевый).
- •14.Электромиграция в металлических пленках. Технологические пути снижения электромиграции.
- •15.Создание омических контактов. Технологические пути повышения омичности контакта.
- •7. Микролитография.
- •Укрупненная схема техпроцесса фотолитографии.
- •2.Химподготовка химически активных технологических слоев.
- •3.Химподготовка химически неактивных технологических слоев.
- •4.Нанесение резиста на технологический слой. Основные методы.
- •5.Нанесение сверхтонкого слоя фоторезиста (Ленгмюровские пленки).
- •Травление кремния в щелочных растворах и кислотных травителях.
- •Использование травления кремния для выявления дефектов пластин.
- •Химическое травления диоксида кремния.
- •Электрохимическое травление кремния.
- •Удаление фоторезиста химическим методом и в кислородной плазме.
- •Взрывная фотолитография.
- •Проекционная фотолитография. Используемые варианты.
- •Рентгеновская литография. Техпроцесс изготовления рентгеновского шаблона.
- •Основные типы плазменных реакторов.
6.Турбомолекулярный насос. Принцип работы. Применимость.
Турбомолекулярный насос — один из видов вакуумных насосов, служащий для создания и поддержки высокого вакуума. Действие турбомолекулярного насоса основано на сообщении молекулам откачиваемого газа дополнительной скорости в направлении откачки вращающимся ротором. Ротор состоит из системы дисков. Вакуум, создаваемый турбомолекулярным насосом, - от 10 −2 Па до 10−8 Па (10−10 мбар; 7.5 −11 мм рт ст). Скорость вращения ротора — десятки тысяч оборотов в минуту. Для работы требует применения форвакуумного насоса.
Описание
Турбомолекулярные насосы (ТМН) позволяют получать средний, высокий и сверхвысокий вакуум с остаточными газами, молекулярная масса которых меньше 44.
ТМН представляет собой многоступенчатый осевой компрессор, роторные и статорные ступени которого снабжены плоскими наклонными вдоль радиуса лопатками. При вращении роторных ступеней с высокой скоростью происходит откачка молекул газа из-за их различной вероятности перехода через наклонные каналы ступеней в прямом и обратном направлениях.
ТМН рассчитан на работу в условиях молекулярного режима течения газа. Для обеспечения работоспособности ТМН необходимо обеспечить на выходе из его последней ступени молекулярный режим течения газа любым насосом предварительного разрежения (форвакуумным насосом) с выхлопом в атмосферу.
Молекулярный насос (МН) состоит из молекулярных ступеней, установленных на одном роторе. Для обеспечения его работоспособности возможно применение форвакуумного насоса (в зависимости от конструкций ступеней МН).
Гибридный ТМН (ГТМН) содержит первые ступени от турбомолекулярного насоса, а последние ступени от молекулярного насоса. Роторные ступени ГТМН закреплены на общем валу. Назначение молекулярных ступеней — обеспечить нормальную работу последним ступеням ТМН при повышении давления на входе в ТМН, а также возможность применения более дешёвых одноступенчатых форвакуумных насосов с большим предельным давлением.
Принцип работы.
Турбомолекулярный насос состоит из серии вращающихся (ротор) и неподвижных (статор) пропеллеров. Пропеллеры ротора и статора чередуются и имеют противоположный наклон лопаток.
Работа насоса основана на передаче момента энергии от поверхности быстро вращающегося пропеллера к молекуле газа.
Скорость движения поверхности должна быть высокой для того, чтобы достичь оптимальной эффективности откачки (скорости откачки и отношения сжатия).
picture1
При столкновении молекулы газа с поверхностью пропеллера составляющая скорости движения молекулы, направленная вниз (см рис.1) увеличивается, вследствие чего вероятность движения молекулы в направлении А-В значительно возрастает в сравнении с вероятностью движения в направлении В-А. Чередование ступеней ротора и статора в обычном турбомолекулярном насосе обеспечивает отношение сжатия.
Турбомолекулярный
“drag” насос работает по следующему
принципу:
picture2
Молекула
газа сталкивается с быстро перемещающейся
плоскостью и "протягивается" по
каналу в сторону области с более высоким
давлением.
Обычные турбомолекулярные насосы обеспечивают достаточно высокую скорость откачки, но имеют низкое отношение сжатия при давлении в линии форвакуума выше 10-1 мбар. “Drag” насосы имеют низкую скорость откачки, но обеспечивают высокое отношение сжатия при давлении в линии форвакуума до 10 мбар. Когда оба типа насосов объединены в один корпус (расположены на одной оси вращения), как у Varian MacroTorr, насос может работать в широком диапазоне давлений в линии форвакуума (смотри описание принципа работы MacroTorr). |
Применение
Турбомолекулярные насосы в аналитических инструментах: Эволюция развития аналитических приборов потребовала эквивалентного улучшения технологии вакуумных систем. Компактность, невысокая цена, надежность – это общие требования для всего спектра оборудования, но для каждого конкретного применения есть ряд специфических требований. Понимая это, фирма Varian сфокусировала разработку на достижение оптимальных решений для каждой специфической задачи.