- •1.Кристаллозаготовка
- •1.1 Способы ориентации монокристалла по кристаллографическим плоскостям
- •1.2 Способы резки слитка на пластины
- •Среди основных способов резки слитков на пластины следующие:
- •1.3 Структура нарушенного слоя после механической обработки
- •1.4 Виды шлифовки пластин
- •Скругление краев пластин
- •1.4 Виды полировки пластин
- •1.6 Химико-механическая полировка пластин
- •1.7 Виды разделения пластины на кристаллы
- •1.8 Контрольные точки после финишной полировки
- •2. Химподготовка пластин
- •2.1 Источники загрязнения поверхности и классификация загрязнений
- •2.2 Деионизованная вода. Получение. Основные характеристики технологической деионизованной воды
- •2.3 Гидромеханическая отмывка
- •2.4 Обезжиривание пластин. Реактивы. Способы обезжиривания
- •2.5 Полирующее травление. Задачи травления. Принцип кислотного травления. Основные компоненты кислотного травителя
- •2.6 Щелочное травление кремния. Состав щелочного травителя
- •3.2 Структура установки газофазной эпитаксии кремния
- •3.3 Кинетика роста эпитаксиальной пленки
- •3.4 Процессы массопереноса в эпитаксиальном реакторе. Число Рейнольца. Толщина пограничного газового слоя
- •3.5 Основные типы газофазных эпитаксиальных реакторов
- •3.6 Легирование и автолегирование эпитаксиального слоя.
- •3.7 Основные дефекты эпитаксиальных плёнок и пути их снижения
- •3.8 Молекулярно – лучевая эпитаксия
- •1.Окисление кремния в сухом кислороде. Кинетика. Качество пленок
- •2. Окисление кремния в цикле сухой-влажный-сухой кислород.
- •3. Пирогенное окисление кремния
- •4. Модель окисления Дила- Гроува
- •5. Окисление под давлением
- •6. Контроль параметров и качества окисных пленок.
- •1. Назначение термодиффузии в технологии и основные механизмы термодиффузии в кремнии
- •2. Основные законы термодиффузии.
- •3. Диффузия из неограниченного источника (загонка).
- •4. Диффузия из ограниченного источника (разгонка)
- •5. Основные источники n- и р- примесей для кремния
- •6. Технологические методы проведения диффузии.
- •7. Диффузия из твердого планарного источника
- •8. Контроль толщины диффузионного слоя
- •9. Контроль концентрации легирующей примеси в диффузионном слое.
- •1. Эффект каналирования
- •2. Атомное и электронное торможение имплантированных ионов.Боковое рассеяние.
- •4. Принцип работы масс сепаратора при ионном легировании.
- •5. Источник ионов установки ионного легировании. Конструкция и принцип работы
- •6. Измерение ионного тока. Ячейка Фарадея
- •6. Металлизация
- •Назначение металлизации в ис. Контактное сопротивление металл- полупроводник.
- •3.Механические вращательные насосы. Принцип работы. Применимость.
- •4.Паромасляный (диффузионный) насос. Принцип работы. Применимость.
- •5.Насос Рутса (двухроторный). Принцип работы. Применимость.
- •6.Турбомолекулярный насос. Принцип работы. Применимость.
- •7.Геттерный и криосорбционный насосы. Принцип работы. Применимость.
- •Криосорбционные насосы.
- •8.Термопарный и ионизационный вакуумметры. Принцип работы. Применимость.
- •9.Электронно- лучевое испарение. Принцип. Применимость.
- •10.Импульсное испарение тугоплавких металлов. Основные методы.
- •11.Магнетронное распылительное устройство.
- •12.Ионно- лучевой источник нанесения- травления (типа Кауфман). Принцип, конструкция, применимость.
- •13.Контроль толщины пленок в процессе нанесения (по «свидетелю», кварцевый).
- •14.Электромиграция в металлических пленках. Технологические пути снижения электромиграции.
- •15.Создание омических контактов. Технологические пути повышения омичности контакта.
- •7. Микролитография.
- •Укрупненная схема техпроцесса фотолитографии.
- •2.Химподготовка химически активных технологических слоев.
- •3.Химподготовка химически неактивных технологических слоев.
- •4.Нанесение резиста на технологический слой. Основные методы.
- •5.Нанесение сверхтонкого слоя фоторезиста (Ленгмюровские пленки).
- •Травление кремния в щелочных растворах и кислотных травителях.
- •Использование травления кремния для выявления дефектов пластин.
- •Химическое травления диоксида кремния.
- •Электрохимическое травление кремния.
- •Удаление фоторезиста химическим методом и в кислородной плазме.
- •Взрывная фотолитография.
- •Проекционная фотолитография. Используемые варианты.
- •Рентгеновская литография. Техпроцесс изготовления рентгеновского шаблона.
- •Основные типы плазменных реакторов.
1. Назначение термодиффузии в технологии и основные механизмы термодиффузии в кремнии
Для создания в полупроводнике слоев с различным типом проводимости и p - n -переходов в настоящее время используются два метода введения примеси: термическая диффузия и ионная имплантация (ионное легирование). С уменьшением размеров элементов ИМС и толщин легируемых слоев второй метод стал преимущественным. Однако и диффузионный процесс не теряет своего значения, тем более, что при отжиге полупроводника после ионного легирования распределение примеси подчиняется общим законам диффузии.
Диффузия - это обусловленный хаотическим тепловым движением перенос атомов, он может стать направленным под действием градиента концентрации или температуры. Диффундировать могут как собственные атомы решетки (самодиффузия или гомодиффузия), так и атомы других химических элементов, растворенных в полупроводнике (примесная или гетеродиффузия), а также точечные дефекты структуры кристалла - междоузельные атомы и вакансии.
Основные характеристики диффузионных слоев:
поверхностное сопротивление, или поверхностная концентрация примеси;
глубина залегания p - n -перехода или легированного слоя;
распределение примеси в легированном слое.
До настоящего времени нет достаточно полной общей теории, позволяющей сделать точный расчет этих характеристик. Существующие теории описывают реальные процессы либо для частных случаев и определенных условий проведения процесса, либо для создания диффузионных слоев при относительно низких концентрациях и достаточно больших глубинах введения примеси. Причиной этого является многообразие процессов, протекающих в твердом теле при диффузии, таких как взаимодействие атомов различных примесей друг с другом и с атомами полупроводника, механические напряжения и деформации в решетке кристалла, влияние окружающей среды и других условий проведения процесса.
Основными механизмами перемещения атомов по кристаллу могут быть (рис.3.1): прямой обмен атомов местами - а; кольцевой обмен - б; перемещение по междоузлиям - в; эстафетная диффузия - г; перемещение по вакансиям - д; диссоциативное перемещение - е; миграция по протяженным дефектам (дислокациям, дефектам упаковки, границам зерен).
Термодиффузия―направленное
скачкообразное перемещение (поток),
атомов примеси в кристаллической
решетке, обусловленное тепловым
движением.
2. Основные законы термодиффузии.
Температурная
зависимость коэффициента диффузии
D = D0 exp(–ΔE/kT)
3. Диффузия из неограниченного источника (загонка).
Ц
елью
первого этапа диффузии является введение
в полупроводник точно контролируемого
количества примеси, которое будет
служить ограниченным источником на
втором этапе процесса. При этом
поверхностная концентрация примеси на
границе
х
= 0 все время остается постоянной и равной
N0.
Граничные условия для решения второго
уравнения Фика могут быть записаны в
виде
Это означает, что в начале процесса примесь в объеме кристалла отсутствует, однако на поверхности ее концентрация в любой момент времени равна N0. В процессе диффузии примесь к поверхности кристалла поступает из внешнего источника непрерывно и поток ее все время одинаков. Поэтому процесс и получил название диффузии из бесконечного или неограниченного источника.
Рис.3.3. Распределение примеси при диффузии из бесконечного источника
Р
ешением
уравнения Фика будет выражение
Ф
ункция
erfc
у
- дополняющая к функции ошибок erf
у
– равна
Уравнение (3.6) хорошо выполняется при диффузии примеси из газовой или паровой фазы. Распределение примеси для двух времен t1 < t2 показано на рис.3.3.
Величина постоянной поверхностной концентрации N0 определяется скоростью потока примеси, поступающей к поверхности кристалла,
Т
огда
за время
t
в твердое тело поступит количество
примеси, определяемое выражением
Э
то
выражение хорошо выполняется в том
случае, когда глубина проникновения
примеси достаточно велика - превышает
несколько микрометров, а концентрация
примеси сравнительно невелика - не более
1019
см-3.
Максимальное значение величины
N0
равно предельной растворимости примеси
в кремнии при данной температуре.
Предельная растворимость определяется
фазовой диаграммой состояния для кремния
и соответствующей примеси.
