
- •Покрепин б.В. Разработка нефтяных и газовых месторождений
- •Тема 1.
- •1.1. Природные коллекторы нефти и газа.
- •1.2. Гранулометрический состав пород.
- •1.3. Пористость горных пород.
- •1.4. Проницаемость горных пород.
- •1.5. Удельная поверхность породы.
- •1.6. Коллекторские свойства терригенных пород.
- •1.7. Коллекторские свойства карбонатных пород.
- •1.8. Механические свойства горных пород.
- •1.9. Тепловые свойства горных пород и насыщающих их флюидов.
- •2.1. Нефть, ее химический состав.
- •2.2. Компоненты нефти, влияющие на процесс нефтедобычи.
- •2.3. Классификация нефти в зависимости от содержания серы, парафина, смол и других компонентов.
- •2.4. Фракционный состав нефти.
- •2.5. Плотность нефти и способы ее измерения.
- •2.6. Вязкость нефти и способы ее измерения.
- •2.7. Давление насыщения и газовый фактор.
- •2.8. Пластовый нефтяной газ, его состав.
- •2.9. Физические свойства нефтяного газа.
- •2.10. Уравнение состояния газов.
- •2.11. Состояние углеводородных газожидкостных систем при изменении давления и температуры.
- •2.12. Диаграмма фазовых состояний многокомпонентной системы.
- •Тема 3.
- •3.1. Пластовое давление и температура.
- •3.2. Приведенное пластовое давление.
- •3.3. Физические свойства нефти в пластовых условиях.
- •3.4. Отбор проб пластовой нефти.
- •3.5. Установки для исследования проб пластовой нефти.
- •3.6. Пластовые воды, их классификация.
- •3.7. Физические свойства пластовых вод.
- •3.8. Состояние связанной воды в нефтяной залежи.
- •3.9. Нефте- и водонасыщенность коллекторов.
- •3.10. Молекулярно-поверхностные свойства системы "нефть-газ-вода-порода".
- •3.11. Приток жидкости к скважинам.
- •3.12. Виды гидродинамического несовершенства скважин.
- •Тема 4.
- •4.1. Пластовая энергия и силы, действующие взалежах нефти и газа.
- •4.2. Силы сопротивления движению нефти по пласту.
- •4.3. Режимы работы нефтяной залежи.
- •4.4. Режимы работы газовой залежи.
- •4.5. Смешанные режимы.
- •4.6. Обобщение и реализация режимов.
- •4.7. Показатели нефтеотдачи пластов.
- •4.8. Механизмы вытеснения нефти из пласта.
- •4.9. Газоотдача и конденсатоотдача пластов.
- •4.10. Нефтеотдача при различных режимах эксплуатации залежи.
- •Тема 5.
- •5.1. Понятие системы и объекта разработки.
- •5.2. Выделение эксплуатационных объектов.
- •5.3. Системы одновременной и последовательной разработки объектов. Системы одновременной разработки объектов.
- •5.4. Рациональная система разработки.
- •5.5. Основные геологические данные для проектирования разработки.
- •5.6. Системы разработки месторождений.
- •5.7. Показатели разработки месторождений.
- •5.8. Стадии разработки нефтяных месторождений.
- •5.9. Основные периоды разработки газовых и газоконденсатных месторождений.
- •5.10. Особенности разработки газовых месторождений.
- •5.11. Особенности разработки газоконденсатных месторождений.
- •5.12.Регулирование процесса разработки месторождений.
- •5.13. Контроль процесса разработки месторождений.
- •5.14. Анализ процесса разработки месторождений.
- •5.15. Основы проектирования разработки месторождений.
- •Тема 6.
- •6.1. Цели и задачи исследования скважин и пластов.
- •6.2. Методы исследования, применяемые при разработке нефтяных и газовых месторождений.
- •6.3. Исследование скважин на приток при установившихся режимах фильтрации.
- •6.4. Исследование скважин при неустановившихся режимах.
- •6.5. Гидродинамические параметры, определяемые при исследовании скважин и пластов.
- •6.6. Исследование нагнетательных скважин.
- •6.7. Изучение профилей притока и поглощения пластов добывающих и нагнетательных скважин.
- •6.8. Понятие о термодинамических методах исследования скважин.
- •6.9. Гидропрослушивание пластов.
- •6.10. Нормы отбора нефти и газа из скважин и пластов.
- •6.11. Выбор оборудования и приборов для исследования.
- •Тема 7.
- •7.1. Общие понятия о методах воздействия на нефтяные и газовые пласты, их назначение.
- •7.2. Условия эффективного применения поддержания пластового давления.
- •7.3. Виды заводнения.
- •7.4. Выбор и расположение нагнетательных скважин.
- •7.5. Определение количества воды, необходимой для осуществления заводнения, давления нагнетания, приемистости и числа нагнетательных скважин.
- •7.6. Источники водоснабжения.
- •7.7. Требования, предъявляемые к нагнетаемой в пласт воде.
- •7.8. Назначение и классификация методов увеличения нефтеотдачи пластов.
- •7.9. Гидродинамические методы повышения нефтеотдачи пластов.
- •Циклическое заводнение.
- •Метод перемены направления фильтрационных потоков.
- •Форсированный отбор жидкости.
- •7. 10. Тепловые методы повышения нефтеотдачи пластов. Вытеснение нефти паром.
- •Закачка горячей воды.
- •Внутрипластовое горение.
- •Влажное внутрипластовое горение.
- •Влажное внутрипластовое горение.
- •7.11. Газовые методы повышения нефтеотдачи пластов.
- •Вытеснение нефти закачкой углеводородных и сжиженных газов.
- •Закачка газа высокого давления.
- •7.12. Физико-химические методы повышения нефтеотдачи пластов. Полимерное заводнение.
- •Щелочное заводнение.
- •Заводнение с растворами пав.
- •Сернокислотное заводнение.
- •Заводнение с углекислотой.
- •Заводнение мицеллярными растворами.
- •7.13. Микробиологическое воздействие на пласт.
- •7.14. Вибросейсмическое воздействие на пласт.
- •7.15. Критерии подбора объектов воздействия для повышения нефтеотдачи.
- •7.16. Потенциальные возможности методов увеличения нефтеотдачи пластов.
- •Тема 8.
- •8.2. Охрана окружающей среды при разработке нефтяных и газовых месторождений.
- •Экологическая характеристика нефтегазодобывающего производства.
- •Охрана водных ресурсов.
- •8.3. Охрана недр при разработке нефтяных и газовых месторождений.
- •Контрольные вопросы.
- •Тема 1.
- •Тема 2.
- •Тема 4.
- •Тема 5.
- •Тема 6.
- •Тема 7.
- •Тема 8.
- •Список литературы
- •Содержание
2.12. Диаграмма фазовых состояний многокомпонентной системы.
Закономерности фазовых переходов сложнее, если вещество представляет собой многокомпонентную систему (рис.2.3).
Рис.2.3. Диаграмма состояния многокомпонентного газа
В отличие от чистого вещества для многокомпонентных систем изменение объема в двухфазной области сопровождается и изменением давления (рис. 2.3-а). Для полного испарения жидкости необходимо непрерывно понижать давление и, наоборот, для полной конденсации газа надо непрерывно повышать давление. Поэтому давление точки начала парообразования для многокомпонентной системы выше давления точки начала конденсации и при перестроении диаграммы фазовых состояний в координатах давление — температура кривые точек начала испарения и точек росы не совпадают. По сравнению с фазовой диаграммой чистого I вещества диаграмма в этих координатах имеет вид петли (рис.2.3-6). Кривая точек начала парообразования, являющаяся границей, разделяющей области жидкого и двухфазного состояний вещества, и кривая точек росы, отделяющая двухфазную область от области парообразования, соединяются в критической точке С. В данном случае критическая точка не является точкой максимального давления и температуры, при которых одновременно могут существовать две фазы, но, как и в случае чистого вещества в критической точке плотность и состав фаз одинаковы.
Для многокомпонентной системы точка М с максимальной температурой, при которой возможно двухфазное состояние, называется крикондентермой, а точка N с соответствующим давлением — криконденбарой. Между этими точками и критической точкой существуют две области, в которых поведение смеси отличается от поведения чистого вещества. При изотермическом сжатии, например, при температуре Т2 по линии ЕЛ, смесь после пересечения в точке Е линии точек росы частично конденсируется и переходит в двухфазное состояние. С дальнейшим повышением давления доля жидкой фазы возрастает, но лишь для определенного давления, соответствующего точке Д. Последующее увеличение давления от точки Д до точки В ведет к уменьшению доли жидкой фазы, а затем смесь снова переходит в парообразное состояние. Давление в точке Д, при котором образуется максимальное количество жидкой фазы, называется давлением максимальной конденсации.
Аналогичные явления наблюдаются и при изобарном нагревании жидкости по линии ЛНГБ. Первоначально смесь находится в однофазном жидком состоянии. После пересечения линии точек начала парообразования в точке Л в смеси появляется паровая фаза, количество которой растет до точки Н. Последующее повышение температуры ведет к уменьшению объема паровой фазы вплоть до возвращения вещества в жидкое состояние в точке Г.
Области, в которых конденсация и испарение происходят в направлении, обратном фазовым превращениям чистого вещества, получили название ретроградных областей (на рис. 2.3-6 они заштрихованы). Явления, происходящие в этих областях, называют ретроградным (обратным) испарением и ретроградной (обратной) конденсацией. Эти явления широко используются в процессах внутрипромысловой подготовки газа для выбора условий, при которых обеспечивается максимальное отделение газового конденсата.
Петлеобразная форма диаграммы фазовых состояний (рис. 2.3-б) характерна для всех многокомпонентных смесей, но форма петли, положение критической точки и ретроградных областей зависят от состава смеси. Если состав пластовой смеси таков, что крикондентерма располагается левее изотермы, соответствующей пластовой температуре (линии FT3), то по мере снижения давления при разработке месторождения эта смесь будет находиться только в однофазном газовом состоянии. Смеси углеводородов такого состава образуют газовые месторождения. Если состав смеси таков, что пластовая температура находится между критической температурой и температурой крикондентермы (линия АТ2), то такие углеводородные смеси образуют газоконденсатные месторождения. В процессе снижения давления при пластовой температуре из них будет выделяться жидкая фаза - конденсат.
Для нефтяных месторождений критическая точка располагается правее изотермы пластовой температуры (линия G71). Если точка G с координатами, соответствующими начальному пластовому давлению и пластовой температуре, расположена выше линии начала парообразования, то нефть находится в однофазном жидком состоянии и недонасыщена газом. Только при снижении давления ниже давления насыщения (точка D) из нефти начинает выделяться газовая фаза Нефтяные месторождения, состав углеводородной смеси которых таков, что начальное пластовое давление (точка К) ниже давления насыщения, имеют газовую шапку, которая представляет собой скопившуюся в верхней части залежи газовую фазу.