
- •Оглавление
- •6 Основные понятия и определения теории абстрактных автоматов (лекция №9)
- •6.1 Математическая модель цифрового автомата
- •6.2 Классификация цифровых автоматов
- •6.3 Разновидности цифровых автоматов
- •7 Способы описания и задания автоматов (лекция№10)
- •7.1 Табличный способ описания цифровых автоматов
- •7.2 Графический способ задания цифровых автоматов
- •8 Абстрактный синтез цифровых автоматов
- •8.1 Структура цифрового автомата
- •8.2 Минимизация числа состояний цифрового автомата
- •8.3 Пример минимизации числа состояний автомата Мура
- •9 Структурный синтез цифровых автоматов
- •9.1 Эвристический алгоритм кодирования синхронних автоматов
- •9.2 Пример структурного синтеза синхронного автомата
6.2 Классификация цифровых автоматов
Рассмотренные выше абстрактные автоматы можно разделить на:
полностью определенные и частичные;
детерминированные и вероятностные;
синхронные и асинхронные;
Полностью определенным называется абстрактный цифровой автомат, у которого функция переходов и функция выходов определены для всех пар ( ai, zj ).
Частичным называется абстрактный автомат, у которого функция переходов или функция выходов, или обе эти функции определены не для всех пар ( ai, zj ).
К детерминированным относятся автоматы, у которых выполнено условие однозначности переходов : автомат, находящийся в некотором состоянии ai, под действием любого входного сигнала zj не может перейти более, чем в одно состояние.
В противном случае это будет вероятностный автомат, в котором при заданном состоянии ai и заданном входном сигнале zj возможен переход с заданной вероятностью в различные состояния.
Для определения синхронных и асинхронных автоматов вводится понятие устойчивого состояния. Состояние as автомата называется устойчивым, если для любого состояния ai и входного сигнала zj таких, что ( ai, zj ) = as имеет место ( as, zj ) = as, т.е. состояние устойчиво, если попав в это состояние под действием некоторого сигнала zj, автомат выйдет из него только под действием другого сигнала zk, отличного от zj.
Автомат, у которого все состояния устойчивы - асинхронный.
Автомат называется синхронным, если он не является асинхронным.
Абстрактный автомат называется конечным, если конечны множества А = {a1, a2, ..., am}, Z = {z1, z2, ..., zf}, W = {w1, w2, ..., wg}. Автомат носит название инициального, если в нем выделено начальное состояние a1.
6.3 Разновидности цифровых автоматов
На практике наибольшее распространение получили два класса автоматов - автоматы Мили (Mealy) и Мура (Moore).
Закон функционирования автомата Мили задается уравнениями:
a(t+1) = (a(t), z(t)); w(t) = (a(t), z(t)), t = 0,1,2,...
Закон функционирования автомата Мура задается уравнениями:
a(t+1)=(a(t), z(t)); w(t) = (a(t)), t = 0,1,2,...
Из сравнения законов функционирования видно, что, в отличие от автомата Мили, выходной сигнал в автомате Мура зависит только от текущего состояния автомата и в явном виде не зависит от входного сигнала. Для полного задания автомата Мили или Мура дополнительно к законам функционирования, необходимо указать начальное состояние и определить внутренний, входной и выходной алфавиты.
Кроме автоматов Мили и Мура иногда оказывается удобным пользоваться совмещенной моделью автомата, так называемым С- автоматом.
Абстрактный С- автомат можно представить в виде устройства с одним входом, на который поступают сигналы из входного алфавита X, и двумя выходами, на которых появляются сигналы из алфавитов Y и U. Отличие С - автомата от моделей Мили и Мура состоит в том, что он одновременно реализует две функции выходов 1 и 2, каждая из которых характерна для этих моделей в отдельности. Закон функционирования С- автомата можно описать следующими уравнениями:
а(t+1) =(a(t), z( t )); w(t) =1(a(t), z(t)); u(t) = 2(a( t )); t = 0, 1, 2, ...
Выходной сигнал Uh=2(am ) выдается все время, пока автомат находится в состоянии am. Выходной сигнал Wg=1( am, zf ) выдается во время действия входного сигнала Zf при нахождении автомата в состоянии am.