Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
physics.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.02 Mб
Скачать

Логарифмический декремент колебаний

Логарифмический декремент колебаний — безразмерная физическая величина, описывающая уменьшение амплитуды колебательного процесса и равная натуральному логарифму отношения двух последовательных амплитуд колеблющейся величины в одну и ту же сторону:

Логарифмический декремент колебаний равен коэффициенту затухания, умноженному на период колебаний:

Вынужденные колебания

Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Наиболее простой и содержательный пример вынужденных колебаний можно получить из рассмотрения гармонического осциллятора и вынуждающей силы, которая изменяется по закону:  .

Вынужденные колебания гармонического осциллятора

Второй закон Ньютона для такого осциллятора запишется в виде:  . Если ввести обозначения:   и заменить ускорение на вторую производную от координаты по времени, то получим следующее обыкновенное дифференциальное уравнение:

Решением этого уравнения будет сумма общего решения однородного уравнения и частног решения неоднородного. Общее решение однородного уравнения было уже получено здесь и оно имеет вид:

,

где   — произвольные постоянные, которые определяются из начальных условий.

Найдём частное решение. Для этого подставим в уравнение решение вида:   и получим значение для константы:

Тогда окончательное решение запишется в виде:

Резонанс

Из решения видно, что при частоте вынуждающей силы, равной частоте свободных колебаний, оно не пригодно — возникает резонанс, то есть «неограниченный» линейный рост амплитуды со временем. Из курса математического анализа известно, что решение в этом случае надо искать в виде:  . Подставим этот анзац в дифференциальное уравнение и получим, что :

Таким образом, колебания в резонансе будут описываться следующим соотношением:

Автоколебания — незатухающие колебания в диссипативной динамической системе с нелинейной обратной связью, поддерживающиеся за счёт энергии постоянного, то есть непериодического внешнего воздействия.

Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.

Примеры

Примерами автоколебаний могут служить:

незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири;

колебания скрипичной струны под воздействием равномерно движущегося смычка

возникновение переменного тока в цепях мультивибратора и в других электронных генераторах при постоянном напряжении питания;

колебание воздушного столба в трубе органа, при равномерной подаче воздуха в неё.

Волны.

Волновое уравнение

Волновое уравнение в математике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравненийматематической физики.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]