
- •Примеры
- •Вывод из уравнений Ньютона
- •Физический смысл
- •Физический смысл работы
- •Определение
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Потенциальная энергия
- •Консервативные силы
- •Диссипативные силы
- •Особенности
- •Пример диссипативных сил
- •Равномерное вращательное движение
- •Равнопеременное вращательное движение
- •Центр масс
- •Определение
- •Формулировка теоремы
- •Доказательство
- •Момент силы
- •Общие сведения
- •Единицы
- •Специальные случаи Формула момента рычага
- •Момент импульса в классической механике Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент инерции
- •Осевой момент инерции
- •Теорема Гюйгенса — Штейнера
- •Осевые моменты инерции некоторых тел
- •Энергия вращательного движения
- •Принцип относительности Галилея
- •Вид преобразований при коллинеарных осях
- •Релятивистская механика
- •Строгое определение
- •Релятивистское замедление времени
- •Второй закон Ньютона в релятивистской механике
- •Формулировки
- •Напряжённость электрического поля
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Кулоновский потенциал
- •Применение теоремы Гаусса
- •Электрическое поле диполя
- •Действие поля на диполь
- •Зависимость вектора поляризации от внешнего поля в постоянном поле
- •Физическая природа
- •Теорема Гаусса для электрической индукции (электрического смещения)
- •Диэлектрическая восприимчивость
- •Диэлектрическая проницаемость
- •Некоторые свойства
- •Электрический конденсатор
- •Свойства конденсатора
- •Основные параметры Ёмкость
- •Удельная ёмкость
- •Энергия электрического поля (не для конденсатора)(общая)
- •Закон Ома
- •Мнемоническая диаграмма для Закона
- •Закон Ома в дифференциальной форме
- •Закон Джоуля — Ленца
- •Определения
- •Электрическая мощность Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Мгновенная электрическая мощность
- •Закон Ампера
- •Сила Лоренца
- •Уравнение (единицы си)
- •Закон Био — Савара — Лапласа
- •Для тока, текущего по контуру (тонкому проводнику)
- •Теорема о циркуляции магнитного поля
- •Математическая формулировка
- •Магнитный момент
- •Формулы для вычисления магнитного момента
- •Напряжённость магнитного поля
- •Намагниченность
- •Магнитная восприимчивость
- •Определение
- •Свойства ферромагнетиков
- •Магнитный поток
- •Закон Фарадея
- •Вихревое электрическое поле
- •Энергия магнитного поля
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
- •Характеристики
- •Гармонические колебания
- •Виды колебаний
- •Определения
- •Энергия гармонических колебаний
- •2.2. Затухающие электромагнитные колебания
- •Логарифмический декремент колебаний
- •Вынужденные колебания
- •Вынужденные колебания гармонического осциллятора
- •Волновое уравнение
- •Вид уравнения
- •Определение
- •Гармоническая волна
- •Одномерный случай
- •Случаи пространства размерностью больше единицы
- •Гармоническая волна
- •Дисперсия
- •Энергия упругой плоской волны
- •Поляризация волн
- •Поляризация электромагнитных волн
- •Теория явления[
- •Поляризация монохроматических волн
Консервативные силы
В физике консервативные силы (потенциальные силы) — это силы, работа которых не зависит от вида траектории, точки приложения этих сил и закона их движения и определяется только начальным и конечным положением этой точки. Равносильным определением является и следующее: консервативные силы — это такие силы, работа которых по любой замкнутой траектории равна 0.
В теоретической физике выделяют только четыре типа сил, каждая из которых является консервативной (см. Фундаментальные взаимодействия). В школьной программе по физике силы разделяют на консервативные и неконсервативные. Примерами консервативных сил являются: сила тяжести, сила упругости, сила кулоновского (электростатического) взаимодействия. Примером неконсервативной силы является сила трения.
Если в системе действуют только консервативные силы, то механическая энергия системы сохраняется.
Для консервативных сил выполняются следующие равенства:
—
работа,
производимая консервативной силой,
определяется только начальным и конечным
положением точки её приложения и не
зависит от выбора траектории, по которой
перемещается тело.
— работа консервативных
сил по произвольному замкнутому контуру
равна 0;
— ротор консервативных
сил равен 0;
—
консервативная
сила является градиентом некой скалярной
функции
,
называемой силовой. Эта функция
равна потенциальной
энергии
взятой
с обратным знаком. Соответственно,
и
связаны
соотношением
Таким образом, потенциальная сила всегда направлена в сторону уменьшения потенциальной энергии.
Диссипативные силы
Диссипативные силы — силы, при действии которых на механическую систеу её полная механическая энергия убывает, переходя в другие, немеханические формы энергии, например, в теплоту.
Особенности
В отличие от потенциальных сил зависят не только от взаимного расположения тел, но и от их относительных скоростей.
Пример диссипативных сил
Силы вязкого или сухого трения;
Сила аэродинамического сопротивления воздуха;
Сила трения скольжения
Вращательное движение тела в зависимости от времени t характеризуют угловые величины: φ (угол поворота в радианах), ω (угловая скорость в рад/сек) и ε (угловое ускорение в рад/сек2).
Закон вращательного движения тела выражается уравнением φ = f (t).
Угловая скорость – величина, характеризующая быстроту вращения тела, определяется в общем случае как производная угла поворота по времени ω = dφ/dt = f' (t).
Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости, определяется как производная угловой скорости ε = dω/dt = f'' (t).
Приступая к решению задач на вращательное движение тела, необходимо иметь в виду, что в технических расчетах и задачах, как правило, угловое перемещение выражается не в радианах φ, а в оборотах φоб.
Поэтому необходимо уметь переходить от числа оборотов к радианному измерению углового перемещения и наоборот.
Так как один полный оборот соответствует 2π рад, то φ = 2πφоб и φоб = φ/(2π).
При вращательном движении тела все его точки движутся по окружностям, центры которых расположены на одной неподвижной прямой (ось вращающегося тела). Очень важно при решении задач, приведенных в этой главе, ясно представлять зависимость между угловыми величинами φ, ω и ε, характеризующими вращательное движение тела, и линейными величинами s, v, at и an, характеризующими движение различных точек этого тела.
Если R – расстояние от геометрической оси вращающегося тела до какой-либо точки А, то зависимость между φ – углом поворота тела и s – расстоянием, пройденным точкой тела за то же время, выражается так: s = φR.
Зависимость между угловой скоростью тела и скоростью точки в каждый данный момент выражается равенством v = ωR.
Касательное ускорение точки зависит от углового ускорения и определяется формулой at = εR.
Нормальное ускорение точки зависит от угловой скорости тела и определяется зависимостью an = ω2R.
При решении задачи, приведенной в этой главе, необходимо ясно понимать, что вращением называется движение твердого тела, а не точки. Отдельно взятая материальная точка не вращается, а движется по окружности – совершает криволинейное движение.