Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
physics.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.02 Mб
Скачать

Энергия магнитного поля

Приращение плотности энергии магнитного поля равно:

где:

H — напряжённость магнитного поля,

B — магнитная индукция

В линейном тензорном приближении магнитная проницаемость есть тензор (обозначим его  ) и умножение вектора на неё есть тензорное (матричное) умножение:

 или в компонентах[12]  .

Плотность энергии в этом приближении равна:

где:

 — компоненты тензора магнитной проницаемости,

 — тензор, представимый матрицей, обратной матрице тензора магнитной проницаемости,

 — магнитная постоянная

При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:

 — диагональные компоненты тензора магнитной проницаемости в его собственных осях (остальные компоненты в данных специальных координатах — и только в них! — равны нулю).

В изотропном линейном магнетике:

где:

 — относительная магнитная проницаемость

В вакууме   и:

Энергию магнитного поля в катушке индуктивности можно найти по формуле:

где:

Ф — магнитный поток,

I — ток,

L — индуктивность катушки или витка с током.

Система уравнений Максвелла.

 

Первое уравнение Максвелла - это обобщение закона Ампера и Био-Саварра для токов смещения. Звучит следующим образом: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему этот контур.

В современном обозначении записывается

Т.о. физический смысл первого уравнения Максвелла состоит в том, что магнитное поле в некоторой области пространства связано не только с токами проводимости, протекающими в этой области, но и с изменением электрического поля во времени в этой области(токами смещения).

Это означает, что циркуляция вектора    по контуру L равна сумме токов проводимости и смещения.

 

Подставляя 1.10, 1.11 в 1.9, получим

Уравнение 1.12 называют первым уравнением Максвелла в интегральной форме.

Получим дифференциальную форму уравнения Максвелла. Для этого воспользуемся уравнением Стокса, которое преобразует контурный интеграл в поверхностный:

Применим уравнение 1.13 к левой части уравнения 1.12. Получим

Уравнение 1.14 справедливо, если равны подынтегральные функции, то есть

Уравнение 1.15 есть первое уравнение Максвелла в дифференциальной форме.

Для изотропных сред

Подставим в 1.15

Дифференциальная форма первого уравнения Максвелла используется в том случае, когда производные поля по координатам пространства непрерывны. Интегральная форма 1.12 такого ограничения не имеет.

 

§1.3. Второе уравнение Максвелла.

 

Второе уравнение Максвелла - это обобщение закона индукции Фарадея для диэлектрической среды в свободном пространстве

где Ф – поток магнитной индукции, пронизывающий проводящий контур и создающий в нем ЭДС. ЭДС создается не только в проводящем контуре, но и в некотором диэлектрическом контуре в виде электрического тока смещения.

                             (1.17)

Физический смысл второго уравнения Максвелла состоит в том, что электрическое поле в некоторой области пространства связано с изменением магнитного поля во времени в этой области. То есть переменное магнитное поле возбуждает вихревое электрическое поле.

Получим второе уравнение Максвелла в интегральной форме

Уравнение 1.19 – второе уравнение Максвелла в интегральной форме.

Воспользуемся уравнением Стокса 1.13, преобразуем левую часть уравнения 1.19:

 

Уравнение 1.20 есть второе уравнение Максвелла в дифференциальной форме.

В изотропных средах

Подставим в уравнение 1.21, получим

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]