
- •Примеры
- •Вывод из уравнений Ньютона
- •Физический смысл
- •Физический смысл работы
- •Определение
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Потенциальная энергия
- •Консервативные силы
- •Диссипативные силы
- •Особенности
- •Пример диссипативных сил
- •Равномерное вращательное движение
- •Равнопеременное вращательное движение
- •Центр масс
- •Определение
- •Формулировка теоремы
- •Доказательство
- •Момент силы
- •Общие сведения
- •Единицы
- •Специальные случаи Формула момента рычага
- •Момент импульса в классической механике Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент инерции
- •Осевой момент инерции
- •Теорема Гюйгенса — Штейнера
- •Осевые моменты инерции некоторых тел
- •Энергия вращательного движения
- •Принцип относительности Галилея
- •Вид преобразований при коллинеарных осях
- •Релятивистская механика
- •Строгое определение
- •Релятивистское замедление времени
- •Второй закон Ньютона в релятивистской механике
- •Формулировки
- •Напряжённость электрического поля
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Кулоновский потенциал
- •Применение теоремы Гаусса
- •Электрическое поле диполя
- •Действие поля на диполь
- •Зависимость вектора поляризации от внешнего поля в постоянном поле
- •Физическая природа
- •Теорема Гаусса для электрической индукции (электрического смещения)
- •Диэлектрическая восприимчивость
- •Диэлектрическая проницаемость
- •Некоторые свойства
- •Электрический конденсатор
- •Свойства конденсатора
- •Основные параметры Ёмкость
- •Удельная ёмкость
- •Энергия электрического поля (не для конденсатора)(общая)
- •Закон Ома
- •Мнемоническая диаграмма для Закона
- •Закон Ома в дифференциальной форме
- •Закон Джоуля — Ленца
- •Определения
- •Электрическая мощность Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Мгновенная электрическая мощность
- •Закон Ампера
- •Сила Лоренца
- •Уравнение (единицы си)
- •Закон Био — Савара — Лапласа
- •Для тока, текущего по контуру (тонкому проводнику)
- •Теорема о циркуляции магнитного поля
- •Математическая формулировка
- •Магнитный момент
- •Формулы для вычисления магнитного момента
- •Напряжённость магнитного поля
- •Намагниченность
- •Магнитная восприимчивость
- •Определение
- •Свойства ферромагнетиков
- •Магнитный поток
- •Закон Фарадея
- •Вихревое электрическое поле
- •Энергия магнитного поля
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
- •Характеристики
- •Гармонические колебания
- •Виды колебаний
- •Определения
- •Энергия гармонических колебаний
- •2.2. Затухающие электромагнитные колебания
- •Логарифмический декремент колебаний
- •Вынужденные колебания
- •Вынужденные колебания гармонического осциллятора
- •Волновое уравнение
- •Вид уравнения
- •Определение
- •Гармоническая волна
- •Одномерный случай
- •Случаи пространства размерностью больше единицы
- •Гармоническая волна
- •Дисперсия
- •Энергия упругой плоской волны
- •Поляризация волн
- •Поляризация электромагнитных волн
- •Теория явления[
- •Поляризация монохроматических волн
Энергия магнитного поля
Приращение плотности энергии магнитного поля равно:
где:
H — напряжённость магнитного поля,
B — магнитная индукция
В
линейном тензорном приближении магнитная
проницаемость есть тензор (обозначим
его
)
и умножение вектора на неё есть тензорное
(матричное) умножение:
или
в компонентах[12]
.
Плотность энергии в этом приближении равна:
где:
—
компоненты тензора магнитной
проницаемости,
—
тензор, представимый
матрицей, обратной матрице
тензора магнитной проницаемости,
— магнитная постоянная
При выборе осей координат совпадающими с главными осями тензора магнитной проницаемости формулы в компонентах упрощаются:
—
диагональные компоненты
тензора магнитной проницаемости в его
собственных осях (остальные компоненты
в данных специальных координатах —
и только в них! — равны
нулю).
В изотропном линейном магнетике:
где:
— относительная магнитная проницаемость
В
вакууме
и:
Энергию магнитного поля в катушке индуктивности можно найти по формуле:
где:
Ф — магнитный поток,
I — ток,
L — индуктивность катушки или витка с током.
Система уравнений Максвелла.
Первое уравнение Максвелла - это обобщение закона Ампера и Био-Саварра для токов смещения. Звучит следующим образом: циркуляция вектора напряженности магнитного поля по замкнутому контуру равна полному току, пронизывающему этот контур.
В современном обозначении записывается
Т.о. физический смысл первого уравнения Максвелла состоит в том, что магнитное поле в некоторой области пространства связано не только с токами проводимости, протекающими в этой области, но и с изменением электрического поля во времени в этой области(токами смещения).
Это
означает, что циркуляция вектора
по
контуру L
равна сумме токов проводимости и
смещения.
Подставляя 1.10, 1.11 в 1.9, получим
Уравнение 1.12 называют первым уравнением Максвелла в интегральной форме.
Получим дифференциальную форму уравнения Максвелла. Для этого воспользуемся уравнением Стокса, которое преобразует контурный интеграл в поверхностный:
Применим уравнение 1.13 к левой части уравнения 1.12. Получим
Уравнение 1.14 справедливо, если равны подынтегральные функции, то есть
Уравнение 1.15 есть первое уравнение Максвелла в дифференциальной форме.
Для
изотропных сред
Подставим в 1.15
Дифференциальная форма первого уравнения Максвелла используется в том случае, когда производные поля по координатам пространства непрерывны. Интегральная форма 1.12 такого ограничения не имеет.
§1.3. Второе уравнение Максвелла.
Второе уравнение Максвелла - это обобщение закона индукции Фарадея для диэлектрической среды в свободном пространстве
где Ф – поток магнитной индукции, пронизывающий проводящий контур и создающий в нем ЭДС. ЭДС создается не только в проводящем контуре, но и в некотором диэлектрическом контуре в виде электрического тока смещения.
(1.17)
Физический смысл второго уравнения Максвелла состоит в том, что электрическое поле в некоторой области пространства связано с изменением магнитного поля во времени в этой области. То есть переменное магнитное поле возбуждает вихревое электрическое поле.
Получим второе уравнение Максвелла в интегральной форме
Уравнение 1.19 – второе уравнение Максвелла в интегральной форме.
Воспользуемся уравнением Стокса 1.13, преобразуем левую часть уравнения 1.19:
Уравнение 1.20 есть второе уравнение Максвелла в дифференциальной форме.
В изотропных средах
Подставим в уравнение 1.21, получим