
- •Примеры
- •Вывод из уравнений Ньютона
- •Физический смысл
- •Физический смысл работы
- •Определение
- •Работа силы (сил) над одной точкой
- •Работа силы (сил) над системой или неточечным телом
- •Кинетическая энергия
- •Потенциальная энергия
- •Консервативные силы
- •Диссипативные силы
- •Особенности
- •Пример диссипативных сил
- •Равномерное вращательное движение
- •Равнопеременное вращательное движение
- •Центр масс
- •Определение
- •Формулировка теоремы
- •Доказательство
- •Момент силы
- •Общие сведения
- •Единицы
- •Специальные случаи Формула момента рычага
- •Момент импульса в классической механике Определение
- •Вычисление момента
- •Сохранение углового момента
- •Момент инерции
- •Осевой момент инерции
- •Теорема Гюйгенса — Штейнера
- •Осевые моменты инерции некоторых тел
- •Энергия вращательного движения
- •Принцип относительности Галилея
- •Вид преобразований при коллинеарных осях
- •Релятивистская механика
- •Строгое определение
- •Релятивистское замедление времени
- •Второй закон Ньютона в релятивистской механике
- •Формулировки
- •Напряжённость электрического поля
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Кулоновский потенциал
- •Применение теоремы Гаусса
- •Электрическое поле диполя
- •Действие поля на диполь
- •Зависимость вектора поляризации от внешнего поля в постоянном поле
- •Физическая природа
- •Теорема Гаусса для электрической индукции (электрического смещения)
- •Диэлектрическая восприимчивость
- •Диэлектрическая проницаемость
- •Некоторые свойства
- •Электрический конденсатор
- •Свойства конденсатора
- •Основные параметры Ёмкость
- •Удельная ёмкость
- •Энергия электрического поля (не для конденсатора)(общая)
- •Закон Ома
- •Мнемоническая диаграмма для Закона
- •Закон Ома в дифференциальной форме
- •Закон Джоуля — Ленца
- •Определения
- •Электрическая мощность Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Мгновенная электрическая мощность
- •Закон Ампера
- •Сила Лоренца
- •Уравнение (единицы си)
- •Закон Био — Савара — Лапласа
- •Для тока, текущего по контуру (тонкому проводнику)
- •Теорема о циркуляции магнитного поля
- •Математическая формулировка
- •Магнитный момент
- •Формулы для вычисления магнитного момента
- •Напряжённость магнитного поля
- •Намагниченность
- •Магнитная восприимчивость
- •Определение
- •Свойства ферромагнетиков
- •Магнитный поток
- •Закон Фарадея
- •Вихревое электрическое поле
- •Энергия магнитного поля
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
- •Характеристики
- •Гармонические колебания
- •Виды колебаний
- •Определения
- •Энергия гармонических колебаний
- •2.2. Затухающие электромагнитные колебания
- •Логарифмический декремент колебаний
- •Вынужденные колебания
- •Вынужденные колебания гармонического осциллятора
- •Волновое уравнение
- •Вид уравнения
- •Определение
- •Гармоническая волна
- •Одномерный случай
- •Случаи пространства размерностью больше единицы
- •Гармоническая волна
- •Дисперсия
- •Энергия упругой плоской волны
- •Поляризация волн
- •Поляризация электромагнитных волн
- •Теория явления[
- •Поляризация монохроматических волн
Строгое определение
Пусть стержень покоится в инерциальной системе отсчёта K и расстояние между концами стержня, измеренное в К ("собственная" длина стержня), равно l. Пусть далее стержень движется вдоль своей длины со скоростьюv относительно некой другой (инерциальной) системы отсчёта K'. В таком случае расстояние l' между концами стержня, измеренное в системе отсчета K', составит
,
где c —
скорость света.
При этом, расстояния поперёк движения одинаковы в обоих системах отсчета K и K'.
Величина γ, обратная множителю с корнем, называется также Лоренц-фактором. С её использованием эффект можно сформулировать и так: время пролёта стержня мимо фиксированной точки системы отсчёта K' составит
.
Релятивистское замедление времени
Под релятивистским замедлением времени обычно подразумевают кинематический эффект специальной теории относительности, заключающийся в том, что в движущемся теле все физические процессы проходят медленнее, чем следовало бы для неподвижного тела по отсчётам времени неподвижной (лабораторной) системы отсчёта.
Релятивистское замедление времени проявляется, например, при наблюдении короткоживущих элементарных частиц, образующихся в верхних слоях атмосферы под действием космических лучей и успевающих благодаря ему достичь поверхности Земли.
Данный эффект, наряду с гравитационным замедлением времени учитывается в спутниковых системах навигации, например, в GPS ход времени часов спутников скорректирован на разницу с поверхностью Земли[2], составляющую суммарно 38 микросекунд в день.
В качестве иллюстрации релятивистского замедления времени часто приводится парадокс близнецов.
Количественное описание замедления времени может быть получено из преобразований Лоренца:
где
—
время, проходящее между двумя событиями
движущегося объекта с точки зрения
неподвижного наблюдателя,
—
время, проходящее между двумя событиями
движущегося объекта с точки зрения
наблюдателя, связанного с движущимся
объектом,
—
относительная скорость движения
объекта,
—
скорость света в вакууме. Точность
формулы неоднократно проверена на
элементарных частицах и атомах[,
так что относительная ошибка составляет
менее 0,1 ppm.
Аналогичное обоснование имеет эффект лоренцева сокращения длины.
Второй закон Ньютона в релятивистской механике
Сила
определяется как
,
также известно выражение для релятивистского
импульса:
Взяв для определения силы производную по времени от последнего выражения, получим:
где
введены обозначения:
и
.
В результате выражение для силы приобретает вид:
Отсюда видно, что в релятивистской механике в отличие от нерелятивистского случая ускорение не обязательно направлено по силе, в общем случае ускорение имеет также и составляющую, направленную по скорости.
Эквивалентность массы и энергии — физическая концепция теории относительности, согласно которой полная энергия физического объекта (физической системы, тела) равна его (её) массе, умноженной на размерный множитель квадрата скорости света в вакууме:
где
— энергия объекта,
—
его масса,
—
скорость света в вакууме,
равная 299 792 458 м/с.
В зависимости от того, что понимается под терминами «масса» и «энергия», данная концепция может быть интерпретирована двояко:
с одной стороны, концепция означает, что масса тела (инвариантная масса, называемая также массой покоя) равна (с точностью до постоянного множителя c²)[2] энергии, «заключённой в нём», то есть его энергии, измеренной или вычисленной в сопутствующей системе отсчёта (системе отсчёта покоя), так называемой энергии покоя, или в широком смысле внутренней энергии этого тела,
где
—
энергия покоя тела,
—
его масса покоя;
с другой стороны, можно утверждать, что любому виду энергии (не обязательно внутренней) физического объекта (не обязательно тела) соответствует некая масса; например, для любого движущегося объекта было введено понятие релятивистской массы, равной (с точностью до множителя c²) полной энергии этого объекта (включая кинетическую),
где
—
полная энергия объекта,
—
его релятивистская масса.
Электричество и магнетизм.
Электрическое поле — один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменениимагнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.
Закон Кулона — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.