
- •Формулировки
- •Напряжённость электрического поля
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Кулоновский потенциал
- •Применение теоремы Гаусса
- •Электрическое поле диполя
- •Действие поля на диполь
- •Зависимость вектора поляризации от внешнего поля в постоянном поле
- •Физическая природа
- •Теорема Гаусса для электрической индукции (электрического смещения)
- •Диэлектрическая восприимчивость
- •Диэлектрическая проницаемость
- •Некоторые свойства
- •Электрический конденсатор
- •Свойства конденсатора
- •Основные параметры Ёмкость
- •Удельная ёмкость
- •Энергия электрического поля (не для конденсатора)(общая)
- •Закон Ома
- •Мнемоническая диаграмма для Закона
- •Закон Ома в дифференциальной форме
- •Закон Джоуля — Ленца
- •Определения
- •Электрическая мощность Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Мгновенная электрическая мощность
- •Закон Ампера
- •Сила Лоренца
- •Уравнение (единицы си)
- •Закон Био — Савара — Лапласа
- •Для тока, текущего по контуру (тонкому проводнику)
- •Теорема о циркуляции магнитного поля
- •Математическая формулировка
- •Магнитный момент
- •Формулы для вычисления магнитного момента
- •Напряжённость магнитного поля
- •Намагниченность
- •Магнитная восприимчивость
- •Определение
- •Свойства ферромагнетиков
- •Магнитный поток
- •Закон Фарадея
- •Вихревое электрическое поле
- •Энергия магнитного поля
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
Третье уравнение Максвелла определяет источники электрического поля. Физический смысл этого уравнения состоит в том, что электрическое поле в некоторой области пространства связано с электрическим зарядом внутри этой поверхности.
Исходным
для этого уравнения является уравнение
Гаусса, которое говорит о том, что поток
вектора
через
замкнутую поверхность S равен
заряду Q,
заключенному в данной поверхности:
где ρ – объемная плотность заряда.
Подставим 1.24 в 1.23, получим
Уравнение 1.25 есть третье уравнение Максвелла в интегральной форме.
Для того чтобы получить интегральную форму, воспользуемся теоремой Гаусса-Остроградского, которая устанавливает связь между объемным и поверхностным интегралом:
Применим 1.26 к левой части уравнения 1.25, получим
Данное равенство справедливо только в том случае, когда равны подынтегральные функции:
Уравнение 1.27 – третье уравнение Максвелла в интегральной форме.
Заменим
и получим следующее уравнение
Для переменных полей заряды и токи связаны соотношением
где
-
сила тока проводимости;
jпр – плотность тока проводимости;
В итоге, с учетом этих соотношений получим
Воспользуемся теоремой Гаусса – Остроградского
Или
Уравнение 1.30 выражает закон сохранения заряда:
Источник тока проводимости – это изменение заряда во времени.
Уравнение
1.30 также является необходимым
дополнением к системе уравнений
Максвелла,
так как в этой системе необходимо было
связать ρ и
.
Это уравнение можно вывести, воспользовавшись
уже имеющимися уравнениями Максвелла.
Запишем систему уравнений Максвелла
Применим оператор div к первому уравнению Максвелла:
§1.5. Четвертое уравнение Максвелла.
Четвертое уравнение Максвелла устанавливает отсутствие магнитных зарядов и то, что магнитные силовые линии всегда замкнуты. В интегральном виде этот факт записывается в виде уравнения
Поток вектора магнитной индукции через замкнутую поверхность равен нулю, поскольку магнитных зарядов одного знака в природе не обнаружено.
Применяя теорему Гаусса – Остроградского
Или
Уравнение 1.31 – это четвертое уравнение Максвелла в дифференциальной форме.