
- •Формулировки
- •Напряжённость электрического поля
- •Электростатический потенциал
- •Неоднозначность определения потенциала
- •Кулоновский потенциал
- •Применение теоремы Гаусса
- •Электрическое поле диполя
- •Действие поля на диполь
- •Зависимость вектора поляризации от внешнего поля в постоянном поле
- •Физическая природа
- •Теорема Гаусса для электрической индукции (электрического смещения)
- •Диэлектрическая восприимчивость
- •Диэлектрическая проницаемость
- •Некоторые свойства
- •Электрический конденсатор
- •Свойства конденсатора
- •Основные параметры Ёмкость
- •Удельная ёмкость
- •Энергия электрического поля (не для конденсатора)(общая)
- •Закон Ома
- •Мнемоническая диаграмма для Закона
- •Закон Ома в дифференциальной форме
- •Закон Джоуля — Ленца
- •Определения
- •Электрическая мощность Электрическая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Мгновенная электрическая мощность
- •Закон Ампера
- •Сила Лоренца
- •Уравнение (единицы си)
- •Закон Био — Савара — Лапласа
- •Для тока, текущего по контуру (тонкому проводнику)
- •Теорема о циркуляции магнитного поля
- •Математическая формулировка
- •Магнитный момент
- •Формулы для вычисления магнитного момента
- •Напряжённость магнитного поля
- •Намагниченность
- •Магнитная восприимчивость
- •Определение
- •Свойства ферромагнетиков
- •Магнитный поток
- •Закон Фарадея
- •Вихревое электрическое поле
- •Энергия магнитного поля
- •§1.3. Второе уравнение Максвелла.
- •§1.4. Третье уравнение Максвелла. Закон сохранения заряда.
- •§1.5. Четвертое уравнение Максвелла.
Электричество и магнетизм.
Электрическое поле — один из двух компонентов электромагнитного поля, представляющий собой векторное поле, существующее вокруг тел или частиц, обладающих электрическим зарядом, а также возникающий при изменениимагнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела.
Закон Кулона — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами.
Формулировки
Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.
Современная формулировка:
Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.
Важно отметить, что для того, чтобы закон был верен, необходимы:
Точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
Их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
Расположение зарядов в вакууме.
Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2]
В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:
где
—
сила, с которой заряд 1 действует на
заряд 2;
—
величина зарядов;
—
радиус-вектор (вектор, направленный от
заряда 1 к заряду 2, и равный, по модулю,
расстоянию между зарядами —
);
—
коэффициент пропорциональности.
Напряжённость электрического поля
Напряжённость
электрического поля — векторная физическая
величина, характеризующая электрическое
поле в
данной точке и численно равная
отношению силы
действующей
на неподвижный пробный
заряд, помещенный в данную точку поля,
к величине этого заряда
:
.
Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном множителе).
В
каждой точке пространства в данный
момент времени существует свое значение
вектора
(вообще
говоря - разное[3] в
разных точках пространства), таким
образом,
-
это векторное
поле. Формально это выражается в записи
представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле, и законы, которым оно подчиняется, есть предмет электродинамики.
Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].
Электростатика
Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.
Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как
или
то
есть электростатическое поле
оказывается потенциальным
полем. (
в
этом случае - случае электростатики -
принято называть электростатическим
потенциалом).
Также и обратно
Уравнения
поля (уравнения Максвелла) при этом
также сильно упрощаются (уравнения с
магнитным полем можно исключить, а в
уравнение с дивергенцией можно
подставить
)
и сводятся к уравнению
Пуассона:
а в областях, свободных от заряженных частиц - к уравнению Лапласа:
Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).
Теорема Гаусса
Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:
где интегрирование производится по любой замкнутой поверхности S (вычисляя поток через эту поверхность), Q - полный (суммарный) заряд внутри этой поверхности.
Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.
Напряжённость электрического поля точечного заряда
В единицах СИ
Для точечного заряда в электростатике верен закон Кулона
или
.
.
Исторически
закон Кулона был открыт первым, хотя с
теоретической точки зрения уравнения
Максвелла более фундаментальны. С этой
точки зрения он является их следствием.
Получить этот результат проще всего
исходя из теоремы
Гаусса, учитывая сферическую симметрию
задачи: выбрать поверхность S в
виде сферы с центром в точечном заряде,
учесть, что направление
будет
очевидно радиальным, а модуль этого
вектора одинаков везде на выбранной
сфере (так что E можно
вынести за знак интеграла), и тогда,
учитывая формулу для площади сферы
радиуса r:
,
имеем:
откуда сразу получаем ответ для E.
Ответ для получается тогда интегрированием E: