Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ФИЗИКА ТЕОРИЯ.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
271.15 Кб
Скачать

3) Естественный и поляризованный свет. Поляризация при отражении и преломлении света на границе двух диэлектрических сред. Закон Брюстера.

При действии света на вещество основное значение имеет электрическая составляющая электромагнитного поля световой волны, поскольку именно она оказывает основное действие на электроны в атомах вещества.

Свет представляет собой суммарное электромагнитное излучение множества независимо излучающих атомов. Поэтому все ориентации вектора Е будут равновероятны. Такой свет называется естественным.

Поляризованным светом называется свет, в котором направления колебания вектора Е каким либо образом упорядочены. Частично-поляризованный свет – свет с преимущественным направлением колебаний вектора Е. Плоскополяризованный свет – свет в котором Е колеблется только в одной, проходящей через луч плоскости – плоскости поляризации.

Если естественный свет падает на границу раздела двух диэлектриков, то отраженный и преломленный лучи являются частично поляризованными. В отраженном луче преобладают колебания перпендикулярные плоскости падения, а в преломленном – колебания, лежащие в плоскости падения. Если угол падения равен углу Брюстера, который определяется соотношением tg αB = n21, то отраженный луч является плоскополяризованным. Преломленный луч в этом случае поляризуется максимально, но не  полностью. При этом отраженный и преломленный лучи взаимно перпендикулярны.

Поляризация света. Закон Малюса. Естественная анизотропия. Поляризационные приборы. Призма Николя.

При действии света на вещество основное значение имеет электрическая составляющая электромагнитного поля световой волны, поскольку именно она оказывает основное действие на электроны в атомах вещества.

Свет представляет собой суммарное электромагнитное излучение множества независимо излучающих атомов. Поэтому все ориентации вектора Е будут равновероятны. Такой свет называется естественным.

Поляризованным светом называется свет, в котором направления колебания вектора Е каким либо образом упорядочены. Частично-поляризованный свет – свет с преимущественным направлением колебаний вектора Е. Плоскополяризованный свет – свет в котором Е колеблется только в одной, проходящей через луч плоскости – плоскости поляризации.

Доля света прошедшая через поляризатор равна ½, а интенсивность плоскополяризованного света, прошедшего через первый поляризатор: I0 = Iест/2

Поставим на пути плоскополяризованного света второй поляризатор (анализатор) под углом ψ. Интенсивность I света, прошедшего через анализатор, меняется зависимости от угла ψ по закону Малюса: I = I0*(cos ψ)^2

=> интенсивность света, прошедшего через два поляризатора: I = (1/2)*Iест*(cos ψ)^2

Imax = (1/2)Iест, когда поляризаторы параллельны и Imin = 0, когда поляризаторы скрещены.

Оптической анизотропией называется зависимость оптических характеристик среды (показателя преломления, скорости распространения волны) от направления. Существует анизотропия двух видов: естественная и искусственная. Естественной анизотропией обладают кристаллические среды. Искусственная или наведенная анизотропия возникает в ранее изотропной среде под действием внешних воздействий, например, электрического поля, механических напряжений и т.п.

Явление двойного лучепреломления используется при изготовлении поляризационных приборов: поляризационных призм и поляроидов. В призме Николя две составляющие ее призмы склеены клеем с показателем преломления nk, для которого выполнено соотношение ne< nk< no. При выполнении этого условия обыкновенный луч испытывает полное внутреннее отражение на границе раздела призма-клей и выводится из призмы.

Сложение поляризованных колебаний. Четвертьволновые и полуволновые пластинки.

Сложение колебаний световых волн. В клас­сической волновой оптике рассматриваются среды, линейные по своим оптическим св-вам, т.е такие, диэлектрическая и магнитная проницаемость которых н.з. от интенсивности света. Поэтому в волновой оптике справедлив принцип суперпозиции волн. Явления, наблюдающиеся при распространении света в оптически нелинейных средах, исследуются в нелинейной оптике. Нелинейные оптические эффекты становятся существенными при очень больших интенсивностях света, излучаемого мощными лазерами. Пусть две волны одинаковой частоты, накладываясь друг на друга, возбуждают в некоторой точке пространства колебания одинакового направления:

 . Амплитуда результирующего колебания в данной точке будет: где

 . Если разность фаз

 возбуждаемых волнами колебаний остается постоянной во времени, то волны наз-ся когерентными

 

Волновые и полуволновые пластинки.

Рассмотрим крист пластинку, вырезанную параллельно оптической оси. При падении на такую пластинку плоскополяризованного света, обыкновенный и необыкновенный лучи оказываются некогерентными (т.к. колебания каждого цуга разделяются между обыкновенным и необыкновенным лучами в одинаковой пропорции (зависящей от ориентации оптической оси пластинки относительно пл-ти колебаний в падающем луче)). На входе в пласт-ку. разность фаз этих лучей равна 0, на выходе из нее

 -

показатели преломления обыкновенного и необыкновенного лучей (n=c/V). Вырезанная для параллельной оси пластинка, для которой

называется пластинкой в четверть волны. При прохождении через такую пластинку обыкновенный и необыкновенный лучи приобретают разность фаз, равную π/2 (разность фаз определяется с точностью до 2πm). Пластинка, для которой

 , называется пластинкой в полволны.

3. Атомные спектры. Сериальные ф-лы.

Исследования спектров излучения разреженных газов (т.е. спектров излучения отдельных атомов) показали, что каждому газу присущ вполне определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным явл-ся спектр наиболее простого атома – атома водорода. Бальмер (1825-1898) подобрал эмпирическую ф-лу описывающую все известные в то время спектральные линии атома водорода и

видимой области спектра:

= 3, 4, …) где - постоянная

Ридберга. Так как , то ф-ла может быть

переписана для частот: , (n = 3,

4, …), где - так же

постоянная Ридберга. Из полученных выражений вытекает, что спектральные линии отличающиеся различными значениями n, образуют группу или серию линий, называемую серией Бальмера. С увеличением n линии серии сближаются; значение n = ∞ определяет границу серии, к которой со стороны больших частот примыкает сплошной спектр. В дальнейшем в спектре атома водорода было обнаружено еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана: , (n =2, 3, 4, …). В инфракрасной области были обнаружены: серия Пашена: (n= 4, 5, 6, …), серия Прэкета: (n= 5, 6, 7, …), серия Пфунда: , (n= 6, 7, 8, …), серия Хэмфи:,  (n 7, 8, 9, …).

Все приведенные выше серии в спектре атома водорода могут быть описаны одной ф-лой, называемой обобщенной ф-лой Бальмера:

 , где m – имеет в каждой данной серии постоянное значение, m = 1, 2, 3, 4, 5, 6 (определяет серию), n – принимает целочисленные значения, начиная с m+1 (определяет отдельные линии этой серии).

. Опыт Резерфорда. В развитии представлений о строении атома велико значение опытов Резерфорда по рассеянию α-частиц в в-ве. Альфа частицы возникают при радиоактивных превращениях; они являются положительными заряженными частицами с зарядом 2е и массой, примерно в 7300 раз большей массы эл-трона. Пучки α-частиц обладают высокой монохроматичностью (для данного превращения имеют практически одну и ту же скорость

(порядка 107 м/с)). Резерфорд, исследуя прохождение α-частиц в в-ве (через золотую фольгу толщиной примерно 1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые α-частицы (примерно одна из 20000) резко отклоняются от первоначального направления (углы отклонения

достигали даже1800 ). Т.к. электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, как α-частицы, то Резерфордом был сделан вывод, что значительное отклонение α-частиц обусловлено их взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие α-частицы; следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это, в свою очередь означает, что положительный заряд атома сосредоточен в объеме, очень малом по сравнению с объемом атома. На основании воих ядра, имеющего заряд Ze (Z – порядковый номер эл-та в системе Менделеева, е-- элементарный заряд), размер 10-15 -10-14 м и массу , практически равную массе атома, в

области с линейными размерами порядка 10-10 м по замкнутым орбитам движутся электроны, образую электронную оболочку атома. Так атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т.е. вокруг ядра должно вращаться Z электронов.

Оптическая активность. Вращение плоскости поляризации.

Н екоторые вещества наз. оптически активными обладают способностью вращать плоскость поляризации .

d – расстояние пройдённое светом  в веществе,  - удельное вращение численно равноеуглу поворота плоскости поляризации света слоем в-ва единичной длины, С – массовая концентрация.

Оптически активные в-ва разделяются на прово и левовращающие (если смотреть навстречу лучу и плоскость вращается по часовой стрелке- правовращающее)

Искусственная анизотропия. Эффект Керра, эффект Фарадея.

 Искусственная анизотропия проявляется в возникновении двулучепреломления в первоначально изотропных средах при внешних воздействиях. Оптически изотропное тело при деформациях сжатия и растяжения приобретает свойство кристалла, оптическая ось которого коллинеарна с направлением деформирующих сил При распространении перпендикулярно оптической оси линейно поляризованная волна разбивается на две - обыкновенную и необыкновенную, разность показателей преломления для которых равна   где F -деформирующая сила, S – площадь боковой поверхности, b - упруго-оптическая постоянная. На выходе из такого вещества свет в общем случае становится эллиптически поляризованным. Эффект Керра. Оптически изотропное вещество в электрическом поле напряженностью Е  приобретает свойство одноосного кристалла с оптической осью, коллинеарной вектору напряженности электрического поля. Разность показателей преломления для обыкновенной и необыкновенной волн равна:  где k- постоянная Керра, λ- длина волны. На выходе из вещества свет в общем случае становится эллиптически поляриз.

Эффект Фарадея заключается в том, что в магнитном поле первоначально неактивное вещество становится оптически активным. При распространении света в веществе вдоль вектора напряженности магнитного поля плоскость поляризации световой волны вращается.

Угол поворота плоскости поляризации равен где V постоянная Верде.