
- •Определители второго и третьего порядков. Их свойства.
- •Решение систем линейных уравнений методом Крамера.
- •Декартова система координат на плоскости и в пространстве. Расстояние между двумя точками.
- •Полярная система координат. Связь между полярной и декартовой системами координат.
- •Вектор. Проекции вектора на ось. Линейные операции над векторами.
- •Скалярное произведение двух векторов. Выражение скалярного произведения через координаты перемножаемых векторов.
- •Векторное произведение двух векторов. Выражение векторного произведения через координаты перемножаемых векторов.
- •Смешанное произведение трех векторов. Выражение смешанного произведения через координаты перемножаемых векторов.
- •Условие коллинеарности двух векторов. Условие компланарности трех векторов.
- •Общее уравнение прямой. Неполные уравнения прямой. Уравнение прямой в отрезках.
- •Уравнение прямой с угловым коэффициентом. Каноническое и параметрическое уравнение прямой.
- •Уравнение прямой, проходящей через две заданные точки.
- •Угол между двумя прямыми.
- •Условие параллельности и перпендикулярности прямых. Расстояние от точки до прямой.
- •Общее уравнение плоскости. Неполные уравнения плоскости.
- •Угол между двумя плоскостями.
- •Условие параллельности и перпендикулярности плоскостей.
- •Расстояние от точки до плоскости. Уравнение плоскости, проходящей через три заданные точки.
- •Каноническое уравнение прямой в пространстве. Уравнение прямой, проходящей через две заданные точки.
- •Угол между двумя прямыми в пространстве. Условие параллельности и перпендикулярности прямых. Угол между прямой и плоскостью. Условие параллельности и перпендикулярности прямой и плоскости.
- •Канонические уравнения окружности, эллипса, гиперболы, параболы.
- •Поверхности второго порядка.
- •Множества, операции над множествами.
- •Множество действительных чисел. Абсолютная величина действительного числа и ее свойства.
- •Функция. Способы задания функции. График функции. Четные и нечетные функции, монотонные функции, периодические функции.
- •Числовая последовательность и ее предел. Ограниченность сходящейся последовательности.
- •Теорема о пределе суммы, произведения, частного двух последовательностей.
- •Теорема о пределе промежуточной переменной.
- •Предел функции в точке. Основные теоремы о пределах функции.
- •Односторонние пределы. Непрерывность функции в точке. Классификация точек разрыва. Свойства функций, непрерывных на отрезке.
- •Первый замечательный предел.
- •Второй замечательный предел. Число е.
- •Задачи, приводящие к понятию производной. Геометрический и физический смысл производной. Уравнение касательной к кривой.
- •Дифференциал функции в точке, его геометрический смысл. Правила вычисления дифференциала.
- •Связь между дифференцируемостью и непрерывностью функции в точке.
- •Правила дифференцирования. (Производная суммы, произведения, частного функций. Производная сложной и обратной функций.)
- •Производные основных элементарных функций.
- •Производные высших порядков. Механический смысл второй производной.
- •Логарифмическое дифференцирование.
- •Производная функции, заданной параметрически.
- •Раскрытие неопределенностей. Правило Лопиталя.
- •Экстремумы функции. Необходимое условие экстремума. Достаточное условие экстремума.
- •Возрастание и убывание функции. Теорема о знаке производной в случае возрастания (убывания) функции на интервале.
- •Выпуклость графика функции. Точки перегиба.
- •Вертикальные и наклонные асимптоты.
- •Комплексные числа. Действия над комплексными числами.
Вопросы к экзамену по дисциплине «Математика»
Определители второго и третьего порядков. Их свойства.
Определителем
второго порядка называется число равное
разности произведений элементов главной
и второй диагонали:
Определителем
третьего порядка называется следующее
выражение:
Определитель
третьего порядка вычислить легко, если
учесть следующее правило: со знаком
плюс идут произведения троек чисел,
расположенных на главной диагонали
матрицы, и в вершинах треугольников с
основанием параллельным этой диагонали
и вершиной в противоположого угла
матрицы. Со знаком минус идут тройки из
второй диагонали и из треугольноков,
построенных относительно этой диагонали.
Следующая схема демонстрирует это
правило, называемое правилом треугольников.
В схеме синим (слева) отмечены элементы,
чьи произведения идут со знаком плюс,
а зеленым (справа) - со знаком минус.
Свойство 1. Определитель не меняется при транспонировании. Это означает, что определитель матрицы равен определителю транспонированной матрицы (матрицы, в которой строки заменены соответствующими столбцами).
Исходя из первого свойства, в остальных свойствах мы можем говорить только о строках, подразумевая, что эти свойства применими также и к столбцам.
Свойство 2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.
Свойство 3. От перестановки двух строк определитель меняет свой знак.
Свойство 4. Определитель, содержащий две одинаковые строки, равен нулю.
Свойство 5. Если все элементы некоторой строки умножить на некое число, то сам определитель умножится на это число.
Свойство 6. Определитель, содержащий две пропорциональные строки, равен нулю.
Решение систем линейных уравнений методом Крамера.
Метод Крамера - это метод решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (то есть в случае, когда система уравнений имеет единственное решение). Основным математическим действием при решении системы уравнения методом Крамера является вычисление определителей матриц размерностью n (где n - количество уравнений в системе).
Перепишем систему в виде
,
чтобы стало видно основную матрицу
системы
.
Найдем ее определитель по формуле
Имеем
Определитель основной матрицы отличен
от нуля, следовательно, система линейных
уравнений имеет единственное решение.
Найдем его методом Крамера. Вычислим
определители
:
Таким образом,
Декартова система координат на плоскости и в пространстве. Расстояние между двумя точками.
Декартовой прямоугольной системой координат на плоскости (в пространстве) называют две (три) взаимно перпендикулярные оси с общим началом. Первая ось OX называется осью абсцисс, вторая ось OY - осью ординат (третья ось OZ - осью аппликат).
Каждой точке плоскости (пространства) ставится в соответствие упорядоченная пара (тройка) действительных чисел - координат данной точки.
Деление отрезка в данном отношении.
Если известны две точки
плоскости
,
то координаты точки
,
которая делит отрезок
в
отношении
,
выражаются формулами: