
- •Министерство образования республики беларусь белоруский государственный университет
- •Противоопухолевые комплексы платины
- •Оглавление
- •Введение
- •История
- •Механизмы действия противоопухолевых комплексов платины (II, IV)
- •Теломераза
- •Как работает теломераза
- •Теломераза, рак и старение
- •Гипотеза Розенберга
- •Гипотеза биопроцессов
- •Основной механизм комплексов Pt(II)
- •Особенности структур противоопухолевых комплексов платины (II, IV) и основные принципы их дизайна
- •Особенности структуры комплексов
- •Комплексы платины (IV)
- •Механизм устойчивости к противоопухолевым препаратам на основе комплексов платины (II, IV).
- •Стерически затрудненные комплексы платины (II. IV).
- •Tpанc-комплексы платины (II).
- •Комплексы платины (II, IV) с производными 1,2-диаминоциклогексана
- •Модифицирование лабильных групп комплекса.
- •Полинуклеарные комплексы платины (II)
- •Водорастворимые комплексы платины (II. IV)
- •Заключение
- •Список используемой литературы:
Механизмы действия противоопухолевых комплексов платины (II, IV)
Комплексы платины (II, IV) - эффективные цитостатики и противоопухолевые агенты, причем цитотоксичность в отличие от противоопухолевой активности не селективна [15, 17-22, 30]. Не все клеточные яды имеют свойства противоопухолевых агентов. Например, в соответствующих дозах цис- и транс- [Pt(NH3)2CI2] служат цитостатиками, но только цuc-изомер обладает противоопухолевыми свойствами.
Существуют прямые и косвенные доказательства того, что в организме основной мишенью для противоопухолевых комплексов платины (II, IV) является ДНК, о чем свидетельствуют следующие биологические эффекты: ингибирование деления клеток бактерий и образование нитеподобных форм микроорганизмов, индуцирование фагов лизогенных бактерий, инактивация вирусов и функций ДНК, инициирование репарационных процессов, восстанавливающих повреждения ДНК, мутагенные и канцерогенные свойства этих комплексов [34]. При изучении процессов биосинтеза в опухолевых клетках на биохимическом уровне показано, что в терапевтических дозах активные комплексы платины (II, IV) ингибируют синтез ДНК и не влияют на синтез РНК, протеинов и предшественников ДНК, а также на транспорт через мембраны. Неактивные комплексы в таких же лозах не действуют на процессы биосинтеза в клетках [35, 36].
Теломераза
Во многих современных учебниках теломерами называют специализованные концевые районы линейной хромосомной ДНК, состоящие из многократно повторяющихся коротких нуклеотидных последовательностей. Это определение неполное. В состав теломер входят также многие белки, специфически связывающиеся с теломерными ДНК-повторами. Таким образом, теломеры (так же, как и все другие районы хромосомы эукариот) построены из дезоксинуклеопротеидов (ДНП), то есть комплексов ДНК с белками.
Теломераза — фермент, добавляющий особые повторяющиеся последовательности ДНК (TTAGGG у позвоночных) к 3'-концу цепи ДНК на участках теломер, которые располагаются на концах хромосом в эукариотических клетках. Теломеры содержат уплотнённую ДНК и стабилизируют хромосомы. При каждом делении клетки теломерные участки укорачиваются.
Как работает теломераза
Итак, основное назначение теломеразы — синтезировать тандемно повторяющиеся сегменты ДНК, из которых состоит G-цепь теломерной ДНК. Таким образом, она относится к классу ДНК-полимераз, причем оказалось, что теломераза — это РНК-зависимая ДНК-полимераза или обратная транскриптаза. Ферменты этого класса, синтезирующие ДНК на РНК-матрицах, очень хорошо известны молекулярным биологам. Они закодированы и содержатся в ретровирусах (например, в вирусе иммунодефицита человека, вызывающем заболевание СПИДом) и служат для синтеза ДНК-копий их геномов, который в ретровирусе представлен РНК. В клеточном геноме обратные транскриптазы закодированы в ретротранспозонах.
РНК, используемая теломеразой для синтеза теломерной ДНК в качестве матрицы, входит в состав этого фермента. В этом уникальность теломеразы: на сегодня это единственная известная РНК-содержащая обратная транскриптаза. Теломеразные РНК у разных организмов сильно различаются по длине и структуре. Теломеразы простейших содержат РНК длиной в 150—200 нуклеотидных остатков (н.о.), длина теломеразной РНК человека — 450 н.о., в то время как теломераза дрожжей содержит аномально длинную РНК (около 1300 н.о.). Как и любая другая РНК клетки, теломеразная РНК обладает специфической вторичной и третичной структурой. Вторичная структура изолированной теломеразной РНК достоверно установлена только для теломераз простейших. Пространственная структура теломеразной РНК в составе ферментативного комплекса пока еще неизвестна.
Матричный участок представлен в теломеразной РНК только один раз. Его длина не превышает длину двух повторов в теломерной ДНК, которые он кодирует и которым он, разумеется, комплементарен.
Так как теломераза синтезирует сегменты ДНК, повторяющиеся много раз, используя только один сегмент своей РНК, она должна обладать способностью периодически (после завершения синтеза каждого повтора) перемещать (транслоцировать) матричный участок в район З'-конца синтезируемой теломерной ДНК. Источником энергии для такого перемещения, по-видимому, служит сама реакция синтеза цепи теломерной ДНК, поскольку дезоксинуклеозидтрифосфаты — субстраты этой реакции — высокоэнергетические вещества.