
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
4. Какую совокупность значений примет система случайных величин?
Пусть имеется система случайных величин: Х1, Х2, …Хn с совместной плотностью распределения f(х1,х2,…,хn. Если случайные величины независимы, то f(х1,х2,…,хn)=f1(x1)f2(x2) …fn(xn) и розыгрыш совокупности значений системы х1, х2,…,хn сводится к тому, чтобы разыграть каждую из них в отдельности, т.е. организовать n единичных жребиев типа, описанного в п.3. Если случайные величины зависимы, то f(х1,х2,…,хn)=f1(x1)f(x2/x1)f(x3/x1x2)…, где каждая последующая плотность распределения берется условная, при условии, что предыдущие случайные величины приняли определенные значения. При розыгрыше последовательности значений случайных величин получается сначала значение х1 случайной величины Х1; это значение берется в качестве аргумента в условной плотности f(x2/x1); разыгрывается значение х2 случайной величины Х2, оба значения х1, х2 берутся в качестве аргументов в условной плотности f(x3/x1x2) и т.д.
8.3. Современное содержание терминов «имитация», «имитационная модель».
Термины «имитация» и «имитационный эксперимент» появились сначала в теории вероятностей и математической статистике как способ вычисления статистических характеристик интересующих нас случайных величин посредством воспроизведения реализаций соответствующего случайного процесса с помощью его математической модели. Воспроизведение реализаций случайного процесса и есть то, что естественно называть имитационным экспериментом, поскольку реальные эксперименты с измерением интересующих нас случайных величин как бы заменяются их имитацией с помощью математической модели данного процесса.
Вскоре после начала использования методов прикладной математики в управлении экономикой, планировании, исследовании операций, проектировании термины «имитация», «имитационный эксперимент» приобрели в этих областях смысл, не совпадающий с их первоначальной трактовкой. Этими терминами стали обозначать способ выбора рационального управления сложным процессом (рационального плана, рациональной конструкции проектируемого изделия), состоящий в следующем. Некоторым образом разрабатываются варианты управлений (планов, конструкций). Затем эти варианты сравниваются. Для этого при каждом таком варианте процесс (функционирование проектируемого изделия) воспроизводится с помощью его математической модели. Сравнение может происходить по некоторым формальным критериям, а может носить неформальный характер, причем чем сложнее используемая модель, чем больше она содержит реальных факторов, влияющих на принятие решений, тем более естественна неформальная оценка сравниваемых результатов. Математические модели, ориентированные на такое их использование, получили название имитационных, процесс их составления стал называться имитационным моделированием, а каждая акция воспроизведения процесса (функционирования проектируемого изделия) - имитационным экспериментом.
Если изучаемый процесс является случайным (если процесс достаточно сложен, то почти неизбежно он случаен), для сравнения, о котором шла речь выше, необходимо выполнять то, что в теории вероятностей и математической статистике называется имитацией, т. е. вычислять статистические характеристики этого случайного процесса путем набора необходимого для этого количества реализаций (предполагается, что аналитическими средствами вычислить статистические характеристики нельзя) и именно эти статистические характеристики и сравнивать. Даже если дело обстоит именно таким образом, специалисты в области управления, планирования, проектирования, исследования операций, произнося слово «имитация», будут иметь в виду не способ вычисления характеристик случайных процессов путем набора статистики (для них это некоторая необходимая техническая деталь), а то, что альтернативные варианты управлений (планов, конструкций проектируемого объекта) являются внешними по отношению к модели процесса, задаются «извне» ее, а не являются ее продуктом. Они будут называть воспроизведения процесса имитацией и тогда, когда процесс детерминирован. Для них термин «имитация» несет смысловую нагрузку противопоставления термину «оптимизация», в то время как для специалистов в области теории вероятностей и математической статистики термин «имитация» несет оттенок противопоставления аналитическим методам расчета статистических характеристик случайного процесса.
Сопоставление оптимизационных задач с реальным содержанием задач планирования, управления, проектирования приводило к попыткам улучшить модели, лежащие в основе оптимизационных задач, что влекло за собой их усложнение, появление вместо одного критерия оптимальности нескольких или же вообще отказ от оптимизации в рамках усложнившихся моделей и использование их в режиме вариантных расчетов с задаваемыми извне модели вариантами планов (управлений, конструкций проектируемого изделия). Поскольку в этих усложненных моделях присутствовали, как правило, случайные факторы, то получение обоснованных результатов требовало вычисления статистических характеристик, т. е. имитации в том смысле, в котором ее понимают в теории вероятностей и математической статистике. Очень скоро специалисты в области использования математических методов в планировании, управлении, исследовании операций, проектировании присвоили новое содержание терминам «имитация», «имитационная модель», «имитационный эксперимент» — то, о котором говорилось выше. Конечно, содержание этих гуманитарных терминов нельзя очертить достаточно четко: каждый специалист имеет право понимать под ними то, что ему заблагорассудится. Тем не менее, суммируя все то, о чем говорилось, сопоставляя различные трактовки этих терминов, даваемые специалистами в разных сферах, можно сказать то, что уже говорилось ранее. Именно, имитационная модель — это модель, обладающая качествами из следующего набора: «сложность» модели, наличие в ней случайных факторов, описание процесса, развивающегося во времени, невозможность получения результатов без ЭВМ, предназначенность модели для использования ее в режиме вариантных расчетов, т. е. для сравнения путем выполнения имитационных экспериментов, заданных заранее, «извне модели» вариантов планов, управлений, конструкций. Ни одно из перечисленных качеств не является обязательным для того, чтобы именовать модель имитационной. Например, специалист по оптимизации назовет даже очень простую детерминированную модель имитационной, если в ее рамках никакая оптимизационная задача не решается, а она используется в режиме вариантных расчетов для сравнения заранее сформированных альтернативных вариантов управлений. Тем не менее, перечисленные качества в совокупности дают целостное представление о том, какой смысл имеет понятие «имитационная модель» в современной русскоязычной научной литературе.
В англоязычной литературе терминам «имитация», «имитационная модель», «имитационный эксперимент» приблизительно соответствует термин «simulation». Наиболее известна трактовка термина «имитация», которую дал Р.Шеннон, определив ее как «процесс конструирования модели реальной системы и постановки экспериментов на этой модели с целью понять поведение системы либо оценить (в рамках ограничений, накладываемых некоторым критерием или совокупностью критериев) различные стратегии, обеспечивающие функционирование данной системы».
Аналогичное определение этому термину дает Т. Нейлор: «численный метод проведения на цифровых вычислительных машинах экспериментов с математическими моделями, описывающими поведение сложных систем в течение продолжительных периодов времени». Обе приведенные трактовки термина «simulation» укладываются в то содержание терминов «имитация», «имитационная модель», «имитационный эксперимент», которое было очерчено выше.