 
        
        - •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
8.2. Способы организации единичного жребия
Основным элементом, из совокупности которых складывается монте-карловская модель, является одна случайная реализация моделируемого явления, например: один «обстрел» цели», один «день работы» транспорта, одна «эпидемия» и т.п.
Реализация представляет собой как бы один случай осуществления моделируемого случайного явления (процесса) со всеми присущими ему случайностями. Она разыгрывается с помощью специально разработанной процедуры или алгоритма, в котором важную роль играет собственно «розыгрыш» или бросание жребия». Каждый раз, когда в ход моделируемого процесса вмешивается случайность, её влияние учитывается не расчетом, а бросанием жребия.
Предположим, что в ходе моделируемого процесса наступил момент, когда его дальнейшее развитие (а значит и результат) зависит от того, появилось ли на данном этапе событие А или не появилось (например: произошло ли попадание в цель, обнаружен ли некоторый объект, исправна ли некоторая аппаратура и т.д). Тогда нужно «бросанием жребия» решить вопрос: появилось событие А или не появилось? Для этого нужно привести в действие некоторый случайный механизм розыгрыша (бросить игральную кость, несколько монет или выбрать число из таблицы случайных чисел) и условиться о том, какой результат жребия означает появление, а какой – непоявление события А). Ниже мы увидим, что розыгрыш всегда можно организовать так, чтобы событие А имело любую наперед заданную вероятность. Кроме событий, появляющихся случайным образом, на ход и исход операции могут так же влиять разные случайные величины (время, координаты и т.д.). С помощью жребия можно разыграть значения любой случайной величины или совокупность значений нескольких случайных величин. Условимся называть единичным жребием любой элементарный опыт, в котором решается один из вопросов:
- Произошло или не произошло событие А? 
- Какое из возможных событий А1,А2,…Аk произошло? 
- Какое значение приняла случайная величина Х? 
- Какую совокупность значений приняла система случайных величин Х1,Х2,…Хk? 
Рассмотрим способы организации всех разновидностей единичного жребия. При любой организации жребия должен быть пущен в ход какой-то механизм случайного выбора. Механизмы могут быть самыми разнообразными, однако любой из них может быть заменен стандартным механизмом, позволяющим решить одну задачу: получить случайную величину, распределенную с постоянной плотностью от 0 до 1. Условимся для краткости называть такую случайную величину «случайное число от 0 до 1» и обозначать R.
- Появилось или нет событие а?
Пусть
вероятность события А
равна p:
Р(А)=р. Выберем
с помощью стандартного механизма
случайное число R
и будем считать, что если оно меньше р,
событие А
произошло, если больше р
– не произошло.
Действительно: если R
– случайное число от 0 до 1, то 
 ,
где f(r)=1
при 0<r<1
или
,
где f(r)=1
при 0<r<1
или
 .
.
- Какое из нескольких возможных событий появилось?
Пусть имеется полная группа несовместных событий: А1,А2,…Аk с вероятностями р1,р2,…рk. Т.к. события несовместны и образуют полную группу, то р1+р2+…+рk=1. Разделим весь интервал от 0 до 1 на k участков длиной р1,р2,…рk.
 
Если случайное число R, выданное стандартным механизмом, попало, например, на участок р3, это означает, что появилось событие А3.
