
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
6.4.3. Комби-сети
Наиболее полный
набор средств описания дискретных и
дискретно-непрерывных систем в виде
сетей событий применяется при построении
Комби-сетей. Множество Р позиций К-сетей
объединяет 6 подмножеств: Рэ – элементарные,
Рт – с временной задержкой, Рд –
долгоживущие, Рг - гибридные, Рк –
комплексные, Рм – макропозиции. Каждой
позиции отвечает некоторый характерный
для данной позиции набор атрибутивных
переменных
,
.
Позиции сети могут не иметь маркеров,
иметь единственный маркер, накапливать
маркеры (M:
P→N).
При выполнении сети общее число
действующих в ней маркеров изменяется
и в каждый текущий момент времени равно
МА. Всё множество МА маркеров разбивается
на 4 класса: булевские, с атрибутивными
переменными, долгоживущие, изменяющие
вид с элементарного на долгоживущие и
обратно. С двумя первыми классами связаны
элементарные маркировки (запрещены для
позиций Рд), третьему и четвёртому
классам соотносятся долгоживущие
маркировки (запрещены для позиций Рэ,
Рт, Рм). Каждый класс МК использует
определённую структуру данных, все
маркеры класса МК, за исключением
булевского класса, имеют множество
атрибутивных переменных
.
Множество Т
переходов К-сети состоит из 5-ти
подмножеств: Тэ - элементарных, Тпр – с
прерыванием, Тд – долгоживущих, Тк –
комплексных, Тм – макропереходов. Каждый
характеризуется
набором атрибутивных переменных
.
Объединение всех наборов атрибутивных переменных сети образует множество ATTR её локальных переменных.
Связи Е между
позициями и переходами в К-сетях задаются
обычным для сетей Петри способом:
.
Необходимые условия
возбуждения переходов описываются
логическими выражениями. Переход
может перейти в возбуждённое состояние,
если соответствующее этому переходу
логическое выражение будет истинным.
Другое необходимое условие возбуждения
связано с текущей разметкой входных и
выходных позиций перехода. В тех случаях,
когда количество маркеров в
больше, чем это необходимо для возбуждения
перехода, возникает вопрос о механизме
выбора удаляемых маркеров. Такими
механизмами могут быть: FIFO,
LIFO,
HVF,
LVF,
согласно заданным приоритетам или по
указанию пользователя.
После перехода в
позицию
маркер
становится недоступным в ней на время
задержки τ(
).
Значения τ(
)
могут быть определены различными
способами: выбор случайной величины с
заданным законом распределения,
назначение констант из множества
неотрицательных целых чисел, выбором
по указанию пользователя и т.д.
Если
,
необходимо указать конкретную позицию
,
в которую переходят маркеры. Могут быть
различные механизмы: равновероятный
по тестовым условиям, по значениям
атрибутивных переменных маркеров или
по указанию пользователя.
Ещё одна особенность
выполнения К-сетей обусловлена структурой
её связей: в позициях
Рд,
возможны конфликтные ситуации, связанные
с необходимостью выбора какого-то одного
из нескольких возбуждённых переходов,
смежных с
.
Для исключения конфликтов этого вида
в К-сетях применяются специальные
механизмы случайного выбора, выбора по
номеру перехода или по вероятности и
другие. Большое разнообразие возможных
вариантов построения схемы переходов
в К-сетях обусловило разработку основного
набора таких схем, а также способов
построения составных схем, создаваемых
на базе элементов из основного набора.