
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
4.4. Вопросы для самопроверки
1. По каким признакам производят классификацию марковских случайных процессов?
2. Чем отличаются расчеты однородной и неоднородной марковской цепи с дискретным временем?
3. Как от размеченного графа состояний марковской цепи с дискретным временем перейти к матрице переходных вероятностей?
4. Сформулируйте правила составления уравнений Колмогорова для марковской цепи с непрерывным временем.
5. Какими свойствами должен обладать простейший поток событий?
6. В каких случаях существуют предельные вероятности состояний для непрерывных марковских цепей и каким образом эти вероятности определяются?
7. Начертите граф состояний системы для схемы гибели и размножения.
5. Теория массового обслуживания
При исследовании операций часто приходится сталкиваться с работой своеобразных систем, называемых системами массового обслуживания (СМО). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, магазины, парикмахерские и т. п. Каждая СМО состоит из какого-то числа обслуживающих единиц (или «приборов»), которые мы будем называть каналами обслуживания. Каналами могут быть: линии связи, рабочие точки, кассиры, продавцы, лифты, автомашины и др. СМО могут быть одноканальными и многоканальными.
Всякая СМО предназначена для обслуживания какого-то потока заявок (или «требований»), поступающих в какие-то случайные моменты времени. Обслуживание заявки продолжается какое-то, вообще говоря, случайное время Тоб, после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО необслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.
В СМО происходит какой-то СП с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий (или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь). Чтобы дать рекомендации по рациональной организации этого процесса и предъявить разумные требования к СМО, необходимо изучить СП, описать его математически. Этим и занимается теория МО.
Предмет теории массового обслуживания — построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками — показателями эффективности СМО, описывающими, с той или другой точки зрения, ее способность справляться с потоком заявок. В качестве таких показателей (в зависимости от обстановки и целей исследования) могут применяться разные величины, например: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди и среднее время ожидания обслуживания; вероятность того, что число заявок в очереди превысит какое-то значение, и т. д. Область применения математических методов теории МО непрерывно расширяется и все больше выходит за пределы задач, связанных с «обслуживающими организациями» в буквальном смысле слова. Как своеобразные СМО могут рассматриваться: ЭВМ, системы сбора и обработки информации, автоматизированные производственные цеха, поточные линии, транспортные системы, системы ПВО и т.п.
Математический анализ работы СМО очень облегчается, если процесс этой работы — марковский. Для этого достаточно, чтобы все потоки событий, переводящие систему из состояния в состояние (потоки заявок, потоки «обслуживаний»), были простейшими. Если это свойство нарушается, то математическое описание процесса становится гораздо сложнее и довести его до явных, аналитических формул удается лишь в редких случаях. Однако все же аппарат простейшей, марковской теории массового обслуживания может пригодиться для приближенного описания работы СМО даже в тех случаях, когда потоки событий — не простейшие. Во многих случаях для принятия разумного решения по организации работы СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного. Причем, чем сложнее СМО, чем больше в ней каналов обслуживания, тем точнее оказываются эти приближенные формулы.