
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
4.3.5. Схема гибели и размножения
Мы знаем, что имея в распоряжении размеченный граф состояний, можно легко написать уравнения Колмогорова для вероятностей состояний, а также написать и решить алгебраические уравнения для финальных вероятностей. Для некоторых случаев удается последние уравнения решить заранее, в буквенном виде. В частности, это удается сделать, если граф состояний системы представляет собой так называемую «схему гибели и размножения».
Рис. 4.5. Схема «гибели и размножения»
Граф состояний для схемы гибели и размножения имеет вид, показанный на рис. 4.5. Особенность этого графа в том, что все состояния системы можно вытянуть в одну цепочку, в которой каждое из средних состояний (S1, S2, ..., Sn-1) связано прямой и обратной стрелкой с каждым из соседних состояний — правым и левым, а крайние состояния (S0, Sn) — только с одним соседним состоянием. Термин «схема гибели и размножения» ведет начало от биологических задач, где подобной схемой описывается изменение численности популяции.
Схема гибели и размножения очень часто встречается в разных задачах практики, в частности — в теории массового обслуживания, поэтому полезно, один раз и навсегда, найти для нее финальные вероятности состояний.
Предположим, что все потоки событий, переводящие систему по стрелкам графа,— простейшие (для краткости будем называть и систему S и протекающий в ней процесс — простейшими).
Пользуясь графом рис. 4.5, составим и решим алгебраические уравнения для финальных вероятностей состояний (их существование вытекает из того, что из каждого состояния можно перейти в каждое другое, и число состояний конечно). Для первого состояния S0 имеем:
(4.1)
Для второго состояния S1:
В силу (4.1) последнее равенство приводится к виду
далее, совершенно аналогично
и вообще
где k принимает все значения от 0 до n. Итак, финальные вероятности р0, p1,..., рn удовлетворяют уравнениям
(4.2)
кроме того, надо учесть нормировочное условие
p0 + р1+ р2+…+ рn=1 (4.3)
Решим эту систему уравнений. Из первого уравнения (4.2) выразим р1 через р0.
(4.4)
Из второго, с учетом (4.4), получим:
(4.5)
из третьего, с учетом (4.5),
(4.6)
и вообще, для любого k (от 1 до N):
(4.7)
Обратим внимание на формулу (4.7). В числителе стоит произведение всех интенсивностей, стоящих у стрелок, ведущих слева направо (с начала и до данного состояния Sk), а в знаменателе — произведение всех интенсивностей, стоящих у стрелок, ведущих справа налево (с начала и до Sk).
Таким образом, все вероятности состояний p1, р2, …, pn выражены через одну из них (p0). Подставим эти выражения в нормировочное условие (4.3). Получим, вынося за скобку p0:
отсюда получим выражение для р0.
(4.
8)
(скобку мы возвели в степень -1, чтобы не писать двухэтажных дробей). Все остальные вероятности выражены через р0 (см. формулы (4.4) — (4.7)). Заметим, что коэффициенты при p0 в каждой из них представляют собой не что иное, как последовательные члены ряда, стоящего после единицы в формуле (4.8). Значит, вычисляя р0, мы уже нашли все эти коэффициенты.
Полученные формулы очень полезны при решении простейших задач теории массового обслуживания.