Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фоменков - Учебное пособие.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
1.94 Mб
Скачать

4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи

Рассмотрим некоторую физическую систему S={S1,S2,…Sn}, которая переходит из состояния в состояние под влиянием каких-то случайных событий (вызовы, отказы, выстрелы). Будем себе это представлять так, будто события, переводящие систему из состояния в состояние, представляют собой какие-то потоки событий.

Рис. 4.3. Фрагмент графа состояний системы

Пусть система S в момент времени t находится в состоянии Si (рис. 4.3) и может перейти из него в состояние Sj под влиянием какого-то пуассоновского потока событий с интенсивностью ij: как только появляется первое событие этого потока, система мгновенно переходит из Si в Sj . Как мы знаем, вероятность этого перехода за элементарный промежуток времени (элемент вероятности перехода) равна , отсюда вытекает, что плотность вероятности перехода ij в непрерывной цепи Маркова представляет собой не что иное, как интенсивность потока событий, переводящих систему по соответствующей стрелке. Если все потоки событий, переводящие систему S из состояния в состояние пуассоновские, то процесс, протекающий в системе, будет марковским.

Проставим интенсивности пуассоновских потоков (плотности вероятностей переходов) на графе состояний системы у соответствующих стрелок. Получим размеченный граф состояний. На его основе можно написать уравнения Колмогорова и вычислить вероятности состояний.

Пример. Техническая система S состоит из двух узлов I и II, каждый из которых независимо от другого может отказывать. Поток отказов первого узла пуассоновский с интенсивностью I, второго также пуассоновский с интенсивностью II. Каждый узел сразу после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений (окончаний ремонта узла) для обоих узлов – пуассоновский с интенсивностью . Составить граф состояний системы и написать уравнение Колмогорова. Состояния системы: S11 - оба узла исправны; S21 – первый узел ремонтируется, второй исправен; аналогично - S12, S22. Граф состояний и уравнения Колмогорова для данного примера приведены на рис. 4.4.

t=0 p11=1 p21=p22=p12=0

p11+p12+p21+p22=1.

Рис. 4.4. Граф состояний конкретной системы и уравнения Колмогорова

4.3.4. Предельные вероятности состояний

Пусть имеется физическая система S={S1,S2,…Sn}, в которой протекает марковский случайный процесс с непрерывным временем (непрерывная цепь Маркова). Предположим, что ij=const, т.е. все потоки событий простейшие (стационарные пуассоновские). Записав систему дифференциальных уравнений Колмогорова для вероятностей состояний и проинтегрировав эти уравнения при заданных начальных условиях, мы получим p1(t), p2(t),… pn(t), при любом t. Поставим следующий вопрос, что будет происходить с системой S при t. Будут ли функции pi(t) стремиться к каким-то пределам? Эти пределы, если они существуют, называются предельными вероятностями состояний. Можно доказать теорему: если число состояний S конечно и из каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности состояний существуют и не зависят от начального состояния системы. Предположим, что поставленное условие выполнено и предельные вероятности существуют (i=1,2,…n), .

Таким образом, при t в системе S устанавливается некоторый предельный стационарный режим. Смысл этой вероятности: она представляет собой не что иное, как среднее относительное время пребывания системы в данном состоянии. Для вычисления pi в системе уравнений Колмогорова, описывающих вероятности состояний, нужно положить все левые части (производные) равными 0. Систему получающихся линейных алгебраических уравнений надо решать совместно с уравнением .