
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
Рассмотрим некоторую физическую систему S={S1,S2,…Sn}, которая переходит из состояния в состояние под влиянием каких-то случайных событий (вызовы, отказы, выстрелы). Будем себе это представлять так, будто события, переводящие систему из состояния в состояние, представляют собой какие-то потоки событий.
Рис. 4.3. Фрагмент графа состояний системы
Пусть
система S
в момент
времени t
находится в состоянии Si
(рис. 4.3) и может перейти из него в состояние
Sj
под влиянием какого-то пуассоновского
потока событий с интенсивностью ij:
как только появляется первое событие
этого потока, система мгновенно переходит
из Si
в Sj
. Как мы знаем, вероятность этого перехода
за элементарный промежуток времени
(элемент вероятности перехода) равна
,
отсюда вытекает, что
плотность вероятности перехода ij
в непрерывной цепи Маркова представляет
собой не что иное, как интенсивность
потока событий, переводящих систему по
соответствующей стрелке. Если все потоки
событий, переводящие систему S
из состояния в состояние пуассоновские,
то процесс, протекающий в системе, будет
марковским.
Проставим интенсивности пуассоновских потоков (плотности вероятностей переходов) на графе состояний системы у соответствующих стрелок. Получим размеченный граф состояний. На его основе можно написать уравнения Колмогорова и вычислить вероятности состояний.
Пример. Техническая система S состоит из двух узлов I и II, каждый из которых независимо от другого может отказывать. Поток отказов первого узла пуассоновский с интенсивностью I, второго также пуассоновский с интенсивностью II. Каждый узел сразу после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений (окончаний ремонта узла) для обоих узлов – пуассоновский с интенсивностью . Составить граф состояний системы и написать уравнение Колмогорова. Состояния системы: S11 - оба узла исправны; S21 – первый узел ремонтируется, второй исправен; аналогично - S12, S22. Граф состояний и уравнения Колмогорова для данного примера приведены на рис. 4.4.
t=0 p11=1 p21=p22=p12=0
p11+p12+p21+p22=1.
Рис. 4.4. Граф состояний конкретной системы и уравнения Колмогорова
4.3.4. Предельные вероятности состояний
Пусть
имеется физическая система S={S1,S2,…Sn},
в которой протекает марковский случайный
процесс с непрерывным временем
(непрерывная цепь Маркова). Предположим,
что ij=const,
т.е. все потоки событий простейшие
(стационарные пуассоновские). Записав
систему дифференциальных уравнений
Колмогорова для вероятностей состояний
и проинтегрировав эти уравнения
при заданных
начальных условиях, мы получим p1(t),
p2(t),…
pn(t),
при любом
t.
Поставим следующий вопрос, что будет
происходить с системой S
при t.
Будут ли функции pi(t)
стремиться к каким-то пределам? Эти
пределы, если они существуют, называются
предельными вероятностями состояний.
Можно доказать теорему: если число
состояний S
конечно и из каждого состояния можно
перейти (за то или иное число шагов) в
каждое другое, то предельные вероятности
состояний существуют и не зависят от
начального состояния системы. Предположим,
что поставленное условие выполнено и
предельные вероятности существуют
(i=1,2,…n),
.
Таким образом, при t в системе S устанавливается некоторый предельный стационарный режим. Смысл этой вероятности: она представляет собой не что иное, как среднее относительное время пребывания системы в данном состоянии. Для вычисления pi в системе уравнений Колмогорова, описывающих вероятности состояний, нужно положить все левые части (производные) равными 0. Систему получающихся линейных алгебраических уравнений надо решать совместно с уравнением .