
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
2.2. Идентификация моделей с помощью регрессионного метода
Регрессионный анализ представляет собой классический статистический метод. Благодаря своим широким возможностям регрессионные методы давно и успешно используются в инженерной практике. В последнее время в связи с развитием и внедрением быстродействующих ЭВМ они широко используются для идентификации моделей, в том числе для идентификации динамических, многомерных процессов, систем диагностики и управления в реальном масштабе времени. Регрессионный анализ основывается на двух главных принципах.
1. Методы применяются для линейных по идентифицируемым параметрам моделям. Структура математической модели процесса представляется функцией вида:
,
(2.2)
где
аi
–
i-тый
оцениваемый параметр; fi
- i-тая
известная функция,
-
вектор входных воздействий, y
– выходная переменная.
Возможно представление идентифицируемой модели в следующей форме:
(2.3)
где
аi,
bj
– оцениваемые
параметры; fi
и
- априори известные (заданные) функции.
После несложных математических
преобразований на основе этих функций
можно формировать невязки, линейно
зависящие от идентифицируемых параметров
аi,
bj.
На практике, чаще всего в качестве fi и выбираются степенные функции, а соответственно выражения (2.2) и (2.3) являются полиномиальными, либо дробно-рациональными зависимостями. При этом точность описания достигается увеличением числа членов полинома, обеспечивающих их сходимость к реальному процессу. Заметим, что получающаяся модель практически никогда не соответствует физической сущности моделируемого реального процесса, его истинному виду, однако инженерная простота вычислений, удобство практического использования модели, возможность получения результата без «особых размышлений» служит основной причиной широкого распространения на практике регрессионных методов.
Естественно, и в этом случае с помощью удачно выбранного вида полинома можно существенно сократить размер модели, а значит и трудоемкость вычислительного процесса, как при идентификации, так и при использовании модели.
2. Минимизируемой функцией ошибки (разности между прогнозируемой моделью и данными эксперимента) при регрессионном анализе является сумма квадратов ошибок. Благодаря этому удается применить метод наименьших квадратов, математический аппарат которого предельно прост, а вычислительные методы сводятся к методам линейной алгебры.
Регрессионные модели могут быть как линейными, так и нелинейными с любым числом входов и выходов.
2.2.1. Идентификация статических линейных систем с несколькими входами
Пусть необходимо идентифицировать систему с «n» входами x1, x2,…xn и одним выходом y. Представим структуру модели в виде линейного алгебраического уравнения вида:
y=a0 + a1 x1+ a2 x2+…+ anxn , (2.4)
где
a0,
a1,..an
- параметры
модели, подлежащие идентификации. В
результате идентификации мы должны
получить вектор
оценок
истинного вектора
.
Этому вектору будет соответствовать
оценка значения выходной величины
.
Для
определения значений
произведем N
последовательных
измерений величины у,
соответствующих в определенном смысле
произвольным набором величин хi
(i=1,2,…n).
В результате получим вектор
.
По N
наборам входных величин хi
(i=1,2,…n)
будет соответственно N
оценок выходных величин
(2.5)
Разница
характеризует погрешность каждой модели
в каждом из N
измерений. Суммарную погрешность будем
характеризовать величиной:
(2.6)
Определение оценок производят из условия минимума величины суммарной погрешности J. Таким образом, основой идентификации регрессионными методами служит метод наименьших квадратов. Используя аппарат математического анализа, оценка вектора должна удовлетворять необходимому условию экстремума
(i=0,1,2,…n)
(2.7)
Уравнения
(2.7) позволяют построить вычислительный
процесс идентификации вектора
на основе N
групп измерений y
и
.
Для получения эффективных и несмещенных
оценок
*
необходимо, чтобы N
>
n.
Если N=
n+1,
то в оценке
шум измерений не будет сглажен, окажет
негативное влияние и случайность наборов
.
Мерой ошибки регрессионной модели
обычно служит величина среднеквадратичного
отклонения
.
С увеличением N
уменьшается флуктуация
,
ее величина и является определяющей
для выбора N
в рамках принятой структуры модели.
К обсуждаемому типу линейных моделей простым преобразованием сводятся применяемые на практике мультипликативные модели. Действительно, модель типа
(2.8)
с помощью логарифмирования и замены у=lnW, xi=lnZi (i = 1, 2, …m) приводится к виду y= . Зависимости (2.8) широко используются при построении моделей по эмпирическим данным в гидравлике, термодинамике, обработке металлов давлением и т.д. Можно сказать, что и другие типы нелинейных регрессионных моделей, в конечном итоге, сводятся к зависимостям (2.4).