
- •С.А. Фоменков, д.А. Давыдов, в.А. Камаев. Математическое моделирование системных объектов
- •Isbn 5-230-04689-9
- •7.1. Понятие «агрегат» в теории систем ……………………………………….
- •7.3. Моделирование процесса функционирования агрегата ………………..
- •7.4. Кусочно-линейные агрегаты ……………………………………………….
- •1. Понятие о моделях и моделировании
- •1.1. Определение понятия модель. Свойства моделей
- •1.2. Классификация моделей
- •Идеальные модели
- •1.3. Классификация математических моделей по свойствам обобщенного объекта моделирования
- •1.4. Адекватность и эффективность математических моделей
- •1.5. Методы построения моделей
- •1.5.1. Общая логика построения моделей
- •1.5.2. Аналитические модели
- •1.5.3. Идентифицируемые модели
- •1.6. Вопросы для самопроверки
- •2. Построение математических моделей по экспериментальным данным
- •2.1. Постановка задачи идентификации
- •2.2. Идентификация моделей с помощью регрессионного метода
- •2.2.1. Идентификация статических линейных систем с несколькими входами
- •2.2.2. Идентификация нелинейных систем
- •2.2.3. Достоверность (адекватность) регрессионной модели
- •2.3. Построение моделей идентификации поисковыми методами
- •2.4. Вопросы для самопроверки
- •3. Математическое моделирование сложных неоднородных систем
- •3.1. Математические модели элементов
- •3.2. Математические модели взаимодействия элементов сложной системы
- •3.3. Вопросы для самопроверки
- •4. Моделирование по схеме марковских случайных процессов
- •4.1. Классификация марковских процессов
- •4.2. Расчет марковской цепи с дискретным временем
- •4.3. Марковские цепи с непрерывным временем
- •4.3.1. Уравнения Колмогорова
- •4.3.2. Поток событий. Простейший поток и его свойства
- •4.3.3. Пуассоновские потоки событий и непрерывные марковские цепи
- •4.3.4. Предельные вероятности состояний
- •4.3.5. Схема гибели и размножения
- •4.4. Вопросы для самопроверки
- •5. Теория массового обслуживания
- •5.1. Классификация смо и их основные характеристики
- •5.2. Одноканальная смо с отказами
- •5.3. Многоканальная смо с отказами
- •5.4. Одноканальная смо с ожиданием
- •5.5. Вопросы для самопроверки
- •6. Сети Петри
- •6.1. Основные определения
- •6.2. Сети Петри для моделирования
- •6.3. Анализ сетей Петри
- •6.3.1. Задачи анализа сетей Петри
- •6.3.2. Методы анализа
- •6.4. Обобщения сетей Петри
- •6.4.1. Временные сети событий (всс)
- •6.4.3. Комби-сети
- •6.5. Вопросы для самопроверки
- •7. Агрегативное описание систем
- •7.1. Понятие «агрегат» в теории систем
- •7.2. Процесс функционирования агрегата
- •7.2.1. Функционирование агрегата общего вида
- •7.2.2. Функционирование смо как агрегата
- •7.3. Моделирование процесса функционирования агрегата
- •7.4. Кусочно-линейные агрегаты
- •7.4.1. Понятие о кусочно-линейном агрегате.
- •7.4.2. Процесс функционирования кла.
- •7.4.3. Примеры представления систем в виде кла.
- •8.2. Способы организации единичного жребия
- •Появилось или нет событие а?
- •Какое из нескольких возможных событий появилось?
- •3. Какое значение приняла случайная величина?
- •4. Какую совокупность значений примет система случайных величин?
- •8.3. Современное содержание терминов «имитация», «имитационная модель».
- •8.4. Приемы построения и эксплуатации имитационных моделей
- •8.5. Вопросы для самопроверки
- •9. Когнитивные подходы к решению слабоструктурированных и плохо формализованных задач
- •9.1. Когнитивные модели
- •9.2. Вопросы для самопроверки
- •Список использованной литературы
1.5.3. Идентифицируемые модели
В основе всех ныне весьма многочисленных методов идентификации или опытного отождествления модели с объектом-оригиналом, лежит идея мысленного эксперимента с «черным ящиком» (Н. Винер). В предельном (теоретическом) случае «черный ящик» представляет собой некую систему, о структуре и внутренних свойствах которой неизвестно решительно ничего. Зато входы, т.е. внешние факторы, воздействующие на этот объект, и выходы, представляющие собой реакции на входные воздействия, доступны для наблюдений (измерений) в течение неограниченного времени. Задача заключается в том, чтобы по наблюдаемым данным о входах и выходах выявить внутренние свойства объекта или, иными словами, построить модель. Решение задачи допускает применение двух стратегий:
Осуществляется активный эксперимент. На вход подаются специальные сформированные тестовые сигналы, характер и последовательность которых определена заранее разработанным планом. Преимущество: за счет оптимального планирования эксперимента необходимая информация о свойствах и характеристиках объекта получается при минимальном объеме первичных экспериментальных данных и соответственно при минимальной трудоемкости опытных работ. Но цена за это достаточно высока: объект выводится из его естественного состояния (или режима функционирования), что не всегда возможно.
Осуществляется пассивный эксперимент. Объект функционирует в своем естественном режиме, но при этом организуются систематические измерения и регистрация значений его входных и выходных переменных. Информацию получают ту же, но необходимый объем данных существенно, на 2-3 порядка больше, чем в первом случае.
На практике при построении идентифицируемых моделей часто целесообразна смешанная стратегия эксперимента. По тем входным переменным конкретного объекта, которые это допускают (по условиям безопасности, техническим, экономическим соображениям и пр.), проводится активный эксперимент. Его результаты дополняют данными пассивного эксперимента, охватывающего все прочие значимые переменные. «Черный ящик» - теоретически граничный случай. На деле есть объем исходной информации. На практике приходится иметь дело с «серым», отчасти прозрачным ящиком. Поэтому различают три основных класса постановки задачи идентификации объекта:
1. Для сложных и слабо изученных объектов системного характера достоверные исходные данные о внутренних свойствах и структурных особенностях исчезающе малы, почти отсутствуют. Поэтому задача идентификации, казалось бы, должна включать в себя с одной стороны, определение зависимостей, связывающих входы и выходы (обобщенного оператора), с другой определение внутренней структуры объекта. В такой постановке задача не разрешима даже теоретически. Непосредственным результатом идентификации является только определение зависимостей входы-выходы, причем не в параметрической форме – в виде таблиц или кривых. Для того, чтобы говорить о структуре модели, необходимо перейти к параметрической форме их представлений. Однако, как известно, однозначной связи между функциональной зависимостью и порождающей эту зависимость математической структурой не существует. Каждую непараметрическую зависимость вход-выход можно аппроксимировать различными способами и соответственно построить ряд практически равноценных моделей, характеризующихся собственной структурой, собственным набором параметров и их значений. Основанием для предпочтения той или иной параметрической модели могут быть только данные, внешние по отношению к процессу идентификации, например, основанные на теоретических соображениях. Если таких данных нет, то в рассматриваемой ситуации мы получаем чисто функциональную или имитационную модель, которая воспроизводит с тем или иным приближением характеристики объекта.
2. Второй класс задач идентификации характеризуется тем, что априорные данные о структуре моделируемого объекта, в принципе имеются. Однако, какой вклад в характеристики объекта или его модели вносит тот или иной компонент, заранее не известно и это надлежит определить на основе эксперимента наряду со значением соответствующих параметров. Типичный пример – исследование влияния на характеристики динамической системы, описанной в классе стационарных линейных моделей, старших членов соответствующих дифференциальных уравнений ради того, чтобы исключить малые, практически незначимые переменные, и снизив порядок уравнений, упростить модель. Задачи этого класса, связанные с уточнением структуры и оценивания параметров, часто встречаются на практике и характерны для объектов и процессов средней сложности, в частности технологических.
3. Третий класс задач связан с относительно простыми и хорошо изученными объектами, структура которых известна точно и речь идет только о том, чтобы по экспериментальным данным оценить значения всех или некоторых входящих в исследуемую структуру параметров (параметрическая идентификация). Очевидно, что модели данного класса тесно смыкаются с требующими экспериментального доопределения аналитическими моделями и четкой границы между ними не существует. Это наиболее массовый класс задач.
Независимо от характера решаемой на основе идентификации задачи, построение модели базируется на результатах измерений соответствующих величин переменных. С этим связаны два существенных обстоятельства:
Во-первых, эксперимент должен быть обеспечен необходимыми средствами измерения надлежащей точности (датчики, измерительные преобразователи, средства регистрации).
Во-вторых, измерительный комплекс со всеми его компонентами требует метрологического обеспечения, т.е. градуировки, аттестации и периодичности проверки.
Реальные свойства подавляющего большинства сложных объектов, а также неизбежные случайные погрешности измерений, лежащих в основе идентификации, придают последней статистический характер, что влечет за собой необходимость получения больших объемов первичных экспериментальных данных с их последующей обработкой. Поэтому на практике построение моделей путем идентификации неизбежно связано с использованием информационно-вычислительной техники как при получении первичных данных (автоматизация эксперимента), так и для их обработки и использования.