
- •История и закономерности развития естествознания в различные исторические периоды.
- •. Роль естествознания в научно-техническом прогрессе.
- •Особенности методологии естествознания Классификация методов естествознания и их роль в познании
- •Системность и редукционизм в науке
- •Интеграция в естественнонаучном знании
- •Закон,категория, парадигма как инструменты естественнонаучного познания.
- •Естественные и гуманитарные науки, специфика естественнонаучного познания.
- •Естественная и гуманитарная культуры, их взаимосвязь и различие. Путь к единой культуре.
- •Натурфилософская картина мира. Период схоластики в естествознании
- •Геоцентрическая научная картина мира
- •Предпосылки становления классической картины мира и научной модели природы.
- •Механическая картина мира
- •Электромагнитная картина мира
- •Квантово-релятивистская картина мира.
- •Движение – способ существования материи. Основные формы движения материи и их взаимосвязь.
- •Структурные уровни организации материи (микро-,макро-,мегамир).
- •Пространство и время, пространственно-временной континуум.
- •Корпускулярная и континуальная концепции описания природы.
- •Общая характеристика теории относительности.
- •Поле как универсальный переносчик взаимодействия. Виды фундаментальных взаимодействий. Сравнительная характеристика.
- •Открытые системы. Диссипативные системы. Самоорганизация материи.
- •Порядок и хаос в материальном мире, роль сигенетики.
- •Самоорганизация и эволюция материального мира.
- •Динамические и статистические закономерности в природе.
- •Законы дальнодействия и близкодействия.
- •Учение Демокрита об атомизме.
- •Общая характеристика элементарных частиц. Теория кварков.
- •Происхождение Вселенной. Гипотеза большого взрыва.
- •Модели вселенной.Эволюция вселенной.Современная модель Вселенной по Гамову.
- •Сроение вселенной:галактики(типы), звезды, звездные системы. Квазары, пульсары.
- •"Красное смещение" и "реликтовое излучение".
- •Эволюция звезд и галактик.
- •Теории происхождения небесных тел во Вселенной.
- •Концепции происхождения, эволюции и строения Солнечной системы.
- •Характеристика планет Солнечной Системы.
- •Строение земли. Основные характеристики
- •Строение Солнца и процессы, происходящие в его недрах.
- •История геологического развития Земли. Принцип униформизма (Лайель) и теория катастроф (Кювье).
- •Униформизм. Актуалистический метод
- •Различные модели строения атома
- •Значение периодического закона Менделеева для понимания естественнонаучной картины мира.
- •Основные законы классической химии
- •Сущность химической связи и ее виды.
- •Химические системы, энергетика химических процессов, реакционная способность веществ.
- •Катализ и каталитические процессы.
- •Синтез новых химических материалов – способ сохранения природных ресурсов.
- •Уровни организации и свойства живых систем.
- •Понятие о клетке как первооснове живой материи. Функции клетки.
- •Современные представления о роли днк и рнк как носителях наследственной информации.
- •Биополимеры, их классификация, функции и роль в организме.
- •Основные положения клеточной теории.
- •Фотосинтез-основополагающий процесс живой природы.
- •Молекулярные основы воспроизведения генетической информации.
- •Механизмы изменчивости организмов.
- •Генетика-ключевая наука современной биологии. Генная инженерия.
- •Генетический код-основа наследственности. Свойства генетического кода.
- •Концепции эволюции Ламарка и Дарвина.
- •Синтетическая теория эволюции.
- •Эволюционное учение и современные представления об эволюции.
- •Естественный отбор - движущая сила эволюции.
- •Концепции происхождения жизни на Земле.
- •Учение Вернадского о биосфере. Живое вещество. Ноосфера.
- •Роль экологии в естественнонаучном и прикладном аспектах. 4 закона экологии Бирри Коммонера.
- •4 Закона барри коммонера.
- •Глобальные экологические проблемы и пути их решения.
- •Строение атмосферы влияние человека на нее.
- •Сущность глобального экологического кризиса, его компоненты и пути преодоления.
- •Абиотические факторы
- •Исчезновение многообразия видов
- •Перенаселение
- •Итоги развития естественных наук в 20 в.
Общая характеристика теории относительности.
Эйнштейн при создании теории хотел объединить механику и теорию электромагнитного поля. В классической механике был сформулирован принцип физической относительности, который заключался в том, что все механические процессы во всех инерциальных системах происходят одинаково. Эйнштейн же сформулировал обобщенный физический прин
цип относительности: все физические явления происходят одинаково относительно любых инерциальных систем. Согласно принципу постоянства скорости света и обобщенно
му принципу относительности, относительность является одновременностью двух событий к системе отсчета. Раньше считалось, что одновременность является абсолютным событием, которое не зависит от наблюдателя. Но в своей теории относительности Эйнштейн доказал, что время в движущейся системе отсчета протекает гораздо медленнее относительно течения времени в неподвижной системе отсчета.Такие физические величины, как протяженность, время и масса, в теории относительности утратили свой статус абсолютности. Эйнштейн в качестве величины, которая имеет статус постоянной, оставил лишь силу (например, сила тяготения).Общая теория относительности содержит геометрическое толкование явления тяготения. Эйнштейн утверждал, что сила тяжести эквивалента равна искривлению неевклидова пространства. То есть объект, движущийся в пространстве и попавший в поле тяжести, изменяет траекторию своего движения. Теперь можно сделать вывод, что в теории относительности Альберта Эйнштейна пространство и время имеют физические характеристики. А раз они имеют физические характеристики,
следовательно, они являются частью мира физических процессов, причем частью, образующей всю внутреннюю структуру этого мира, «которая связана с законами бытия физического мира» .
21.
Поле как универсальный переносчик взаимодействия. Виды фундаментальных взаимодействий. Сравнительная характеристика.
Фундамента́льные взаимоде́йствия — различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел. На сегодня достоверно известно существование четырех фундаментальных взаимодействий: гравитационного, электромагнитного, сильного и слабого взаимодействий, причём электромагнитное и слабое взаимодействия, вообще говоря, являются проявлениями единого электрослабого взаимодействия. Ведутся поиски других типов взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока существование какого-либо другого типа взаимодействия не обнаружено.
Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом[1]. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.Электромагнитное взаимодействие отличается от слабого[3] и сильного[4] взаимодействия своим дальнодействующим характером — сила взаимодействия между двумя зарядами спадает только как вторая степень расстояния (см.: закон Кулона). По такому же закону спадает с расстоянием гравитационное взаимодействие. Электромагнитное взаимодействие заряженных частиц намного сильнее гравитационного.
Гравитационное взаимодействие описывается законом всемирного тяготения Ньютона. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях и все массы положительны, это, тем не менее, очень важная сила во Вселенной. Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.
Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах и между кварками в адронах.В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами.
Слабое взаимодействие, или слабое ядерное взаимодействие ответственно, в частности, за бета-распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвертого из фундаментальных взаимодействий, гравитационного. Слабое взаимодействие является короткодействующим — оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 10−18 м).
22.